유해화학물질 맞춤형 안전교육 (2019.5.30.)

화학사고 초기대응 역량향상을 위한 실험적 연구

경기도소방재난본부 특수대응단 서 동 호

충남 금산 ○테크놀로지 불산 누출 (2016.6.4)

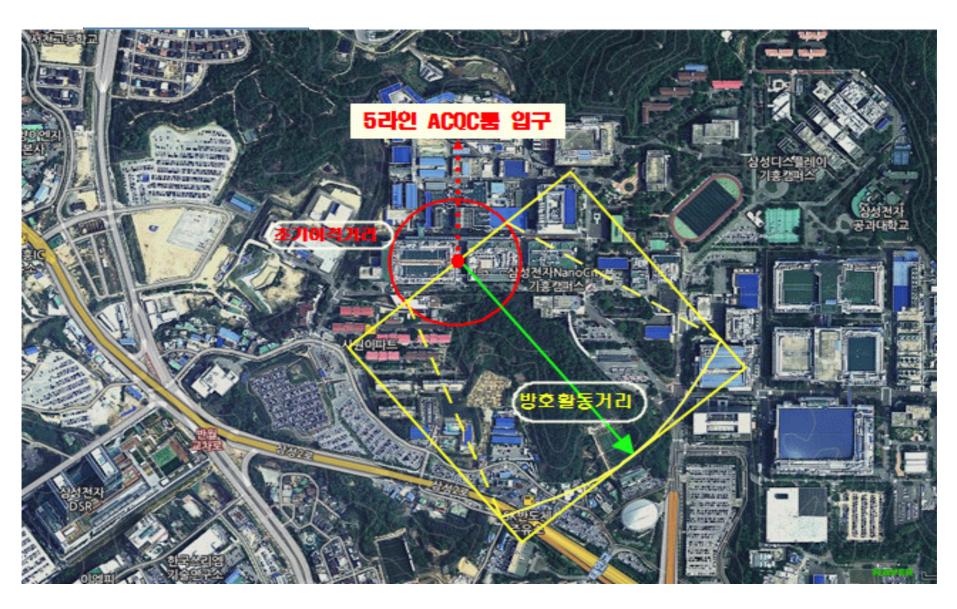
화학사고 대응 원칙(Principles)

The principles of Hazmat Response

대응 3 원칙

(1) 현장대원 안전

- 초기이격거리
- 화학보호복(레벨A)
- •물질 위험성 파악


(2) 2차피해 발생방지

- ·물과 반응성 ex.CaC₂
- 대응순서 준수
- 제독철저(대원, 요구조자)

(3) 피해 최소화 방법

- 중화제(소석회→**중탄산나트륨**)
- · 유해가스 제독(**이동식스크러버**)

초기 이격거리 및 방호활동거리

위험지역별 화학보호복 착용

LEVEL A

- 위험구역(HOT ZONE) 착용
- 가장 높은 수준 피부, 눈, 호흡기 보호요구
- 캡슐형 보호의 / 양압식 공기호흡기

LEVEL B

- 경계구역(WARM ZONE) 착용
- 가장 높은 수준 호흡기 보호 / 캡슐형 or 비캡슐형 액체 튐 보호의
- 극도의 위험물질 접촉하는 일이 없는 경우

LEVEL C

- 낮은 수준의 호흡기 보호
- 화학물질의 피부흡수 위험이 없는 경우
- 공기 정화식 호흡보호구

LEVEL D

- 지원구역(COLD ZONE) 사용
- 일반적인 작업복 수준
- 피부 보호수준 X

물과 반응성 물질들

폭발, 독성가스 등

알칼리금속류 (3류)

리튬(Li), 나트륨(Na), 칼륨(K) 등

알칼리토금속류 (3류)

마그네슘(Mg), 칼슘(Ca) 등

수소화합물 (3류)

LiH, NaH, LiAlH₄, NaBH₄ 등

무기과산화물 (1류)

K₂O₂, Na₂O₂ 등

유기금속화물 (3류)

 $(CH_3)_3Li$, $(CH_3)_3AI$, $(C_2H_5)_3AI$ 등

황화린 (2류)

 P_2S_5

금속인화합물 (3류)

Ca₃P₂, AIP 등

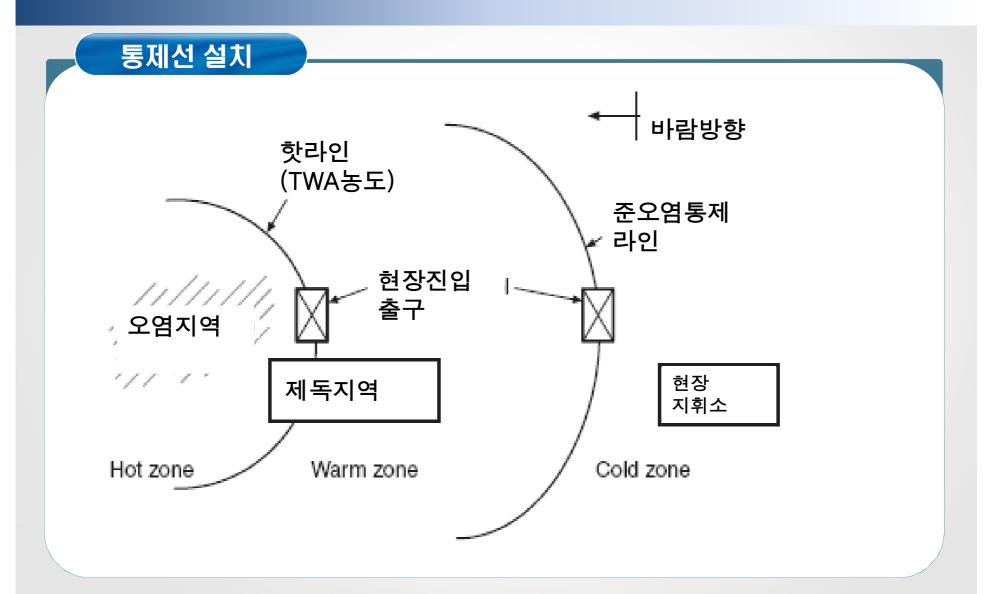
기타

황산, 가성소다 등

폭 발: $CaC_2 + 2H_2O = Ca(OH)_2 + C_2H_2(\uparrow) + 발열$

독성가스: $P_2S_5 + 8H_2O = 5H_2S(\uparrow) + 2H_3PO_4$

화학사고 대응 난이도


NFPA 471

구 분	대응 난이도				
	하	중	상		
물질식별	불필요	플래카드 확인 폐기시 주의 물질	독성가스, 폭발성 물 반응성 등 극히 위험한 물질		
용기크기	소규모 (유리병, 드럼 등)	중간 (약 1톤, 실린더, 이동식컨테이너)	대규모 (탱크로리, 대량 컨테이너 등)		
폭발 위험성	낮음	중간	높음		
누출상황	소량 누출	누출물이 지속적 누출. 특별한 장비가 있어야 차단이 가능함	누출물이 지속적 누출. 특별한 장비가 있어도 차단하기 어려움		
주민피해	위협낮음	좁은지역 오염 및 대피	대단위 지역 오염 및 대피		
환경영향	적음	중간	심각함		
용기 안전성	안전함	경미한 손상 내용물 통제가능	파열 위험 높음		

유해화학물질 피해 최소화 방법

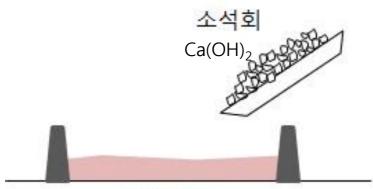
구 분		기 체	액 체	고 체
물리적 방 법	흡수	0	0	×
	방지댐	×	0	×
	희석	×	0	0
	봉 쇄	0	0	0
	증기억제	0	×	×
	증기확산		×	×
	환기		0	×
화학적 방 법	흡착			×
	중화	×		×
	응고	×		×
	태움			
	분해	×		0

위험구역 설정

긴급제독소 운영

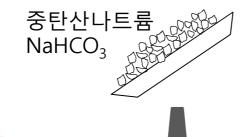
대원제독

화생방분석차(고압제독노즐 약 200bar)

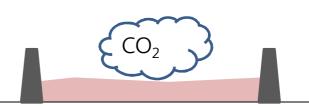

2016. 3. 2 안성 물류창고 암모니아누출

중화제 현장적응성 실험

연구결과

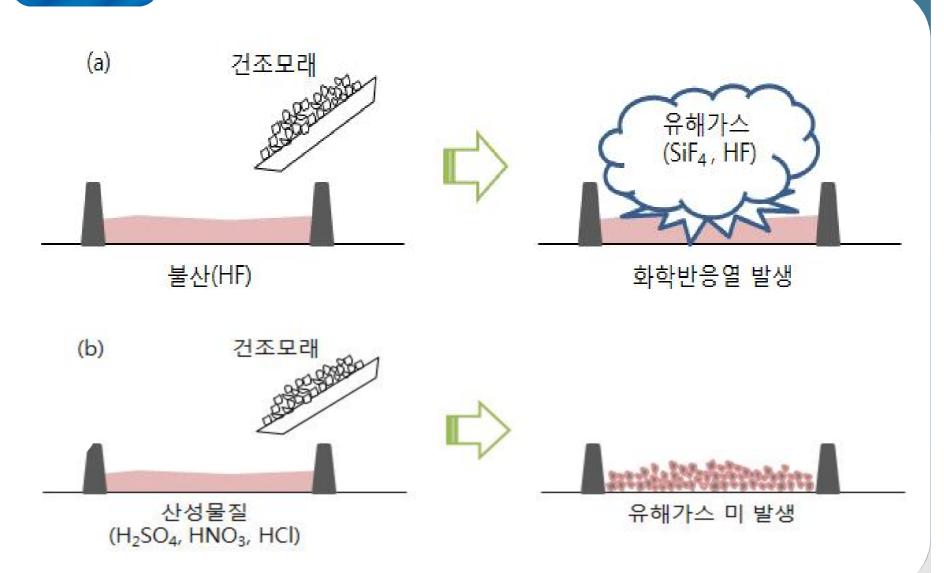

중화

산성물질 (HF, H₂SO₄, HNO₃, HCl)



중화반응열 발생 $Ca(OH)_2 + 2HF = CaF_2 + 2H_2O$

HF, H₂SO₄, HNO₃, HCl



$$NaHCO_3 + HF = NaF + CO_2 + H_2O$$

연구결과

흡착

현장대응 순서(Procedure)

대응순서

확산방지

누출차단

누출물 회수

지역제독

분무주수 방지댐 설치

밸브차단 누출방지장비 설치

폐기물수거업체(대) 화학흡착포(소규모) 이동식 스크러버

중화/ 희석

이동식 스크러버(Potable scrubber)

○ 활용목적 : 불화수소 등 유해가스 누출시 포집·제독 장비

○ 제독원리 : 유해가스 흡입 → 독성물질 흡착 → 정화공기 배출

○ 크기/무게: 620 X 620 X 1,500mm / 250kg

흡입성능: 20m³/min

흡착용량: 400m3

적용물질(17종)

한 성 (() 1 3 중))

Bir (VEXE D)

Summary

- 중화제 교체 : 소석회, 가성소다 → 중탄산나트륨
- 대응순서 : <u>확산방지 ▷ 누출차단 ▷ 누출물 회수 ▷ 잔량 중화</u>
- 유해가스 제독장비 확충 : 이동식 스크러버

유해화학물질 누출 대응(소방)

상황실

- 누출물질·량 및 요구조자 여부 확인
- ☞ 한강유역환경청, 시흥화학재난합동방재센터 등
- 유관기관 전파 / 특수대응단 출동요청
- 최인근 출입 GATE 파악 및 전파
- ☞ 안전관리자가 최인근 GATE에서 소방차 유도 / 안내

선착대

- 누출물질·량 , 누출장소 확인☞ 관계자 확보
- 초기확산 방지 조치 여부 파악 🖙 자체소방대에 확인
- FIRE-LINE 설치 / MSDS 확보
 - ☞ 화학복 미착용자 접근금지 / 관계자 협조요청

유해화학물질 누출 대응(소방)

지휘

- 외부 누출여부 파악 / 주민대피 필요성 판단
- [주민대피구역 설정 (CARIS) / 주민대피]
 - □ 민방위경보시스템, 재난문자발송
- 위험구역 설정

구조대

- 누출장소 내 농도측정
- 누출확산량 최소화 조치
- 인명검색 / 인명구조
 - ☞ 사업장 보유장비(휴대용 가스감지기 / 스크러버) 활용

우선순위별 대응방법

LEVEL A

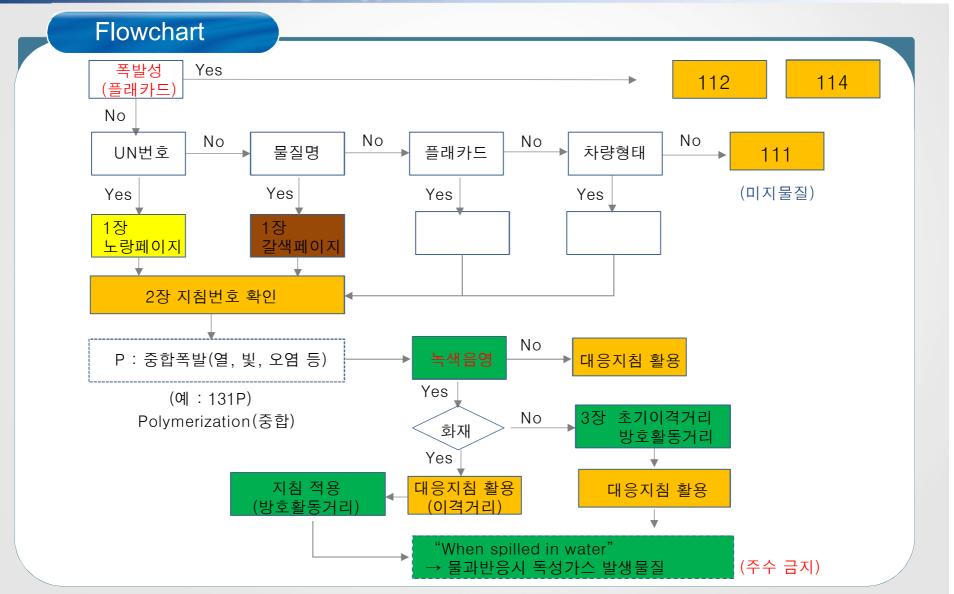
- 위험구역(HOT ZONE) 착용
- 가장 높은 수준 피부, 눈, 호흡기 보호요구
- 캡슐형 보호의 / 양압식 공기호흡기

LEVEL B

- 경계구역(WARM ZONE) 착용
- 가장 높은 수준 호흡기 보호 / 캡슐형 or 비캡슐형 액체 튐 보호의
- 극도의 위험물질 접촉하는 일이 없는 경우

LEVEL C

- 낮은 수준의 호흡기 보호
- 화학물질의 피부흡수 위험이 없는 경우
- 공기 정화식 호흡보호구


LEVEL D

- 지원구역(COLD ZONE) 사용
- 일반적인 작업복 수준
- 피부 보호수준 X

ERG 활용순서

"Before an emergency, become familiar with this guidebook"

긴급제독소 운영

대원제독

화생방분석차(고압제독노즐 약 200bar)

2016. 3. 2 안성 물류창고 암모니아누출

물질식별의 중요성

사례분석

⊌ 일시: 2016. 5. 29(일)

♥ 장소: 부천시 오정구 신흥로 441번길 미래산업(휴대폰 세척공장)

발생개요: 신고자는 공장건물 2층에서 연기가 다량 보인다고 신고함, 부천소방서 선착대가 확인한 바 화재가 아닌 유해화학물질(TCE)가 이상반응으로 발생 누출됨.

사고물질	허용농도	성 상	용도	비고
테트라클로로에틸렌 (TCE, C ₂ Cl ₄)	25ppm	비중:1.62 끓는점: 121℃	금 속 세척제	발암성 물질로 흡입시 건강과 생명에 치명적 손상을 줌 피부 접촉시 화상(지방 단백질 분해)

대응사례

염산 누출

⊌ 일시: 2017. 4. 23(일)

♥ 장소: 안산시 CJ제일제당(물엿 제조공장)

발생개요: 배관공사 중 밸브 결함에 의한 <mark>염산 약 5리터 누출</mark>. 작업자 2명 등 누출 물 비산에 의한 얼굴 등 인명피해 발생.

현장지휘소 (유관기관 협의)

1차 진입 (탐지 및 흡착포 설치)

대응사례

염산 누출

화학흡착포에 의한 염산 회수

대원 장비 간이제독

MSDS 웹을 활용한 물질확인

1.화학제품과 회사에 관한 정보	✓ 8.노출방지 및 개인보호구 ✓
2.유해성·위험성	✓ 9.물리화학적 특성 ✓
3.구성성분의 명칭 및 함유량	✓ 10.안정성 및 반응성
4.응급조치요령	✓ 11.독성에 관한 정보 ✓
5.폭발·화재시 대처방법	✓ 12.환경에 미치는 영향 ✓
6.누출사고시 대처방법	✓ 13.폐기시 주의사항
7.취급 및 저장방법	✓ 14.운송에 필요한 정보
8.노출방지 및 개인보호구	✓ 15.법적 규제현황 ✓
9.물리화학적 특성	✓ 16.그 밖의 참고사항
10.안정성 및 반응성	✔ 문의처 : 연구원 042)869-0312~0315 본부 052)703-0645, 0646
11.독성에 관한 정보	Copyright © 2014 KOSHA, All rights reserved,

후쿠시마 원전사고의 7가제 교훈

하타무라 요타로

- 1. 있을 수 있는 일은 반드시 일어나고, 있을 수 없는 일도 일어난다.
- 2. 보고 싶지 않은 것은 보이지 않는다
- 3. 모든 것은 변하므로 변화에 유연하게 대응해야 한다.
- 4. 가능한 한 모든 예상과 충분한 준비를 해야 한다.
- 5. 비상대응매뉴얼을 만든 것으로 가능하지 않다 . 그 목적을 공유해야 한다.
- 6. 위험의 존재를 인정하고 위험에 바로 맞서 논의 가능한 문화를 만들어야 한다.
- 7. 현장대원의 눈으로 보고 스스로 판단해 행동하는 능력을 기르는 일이 중요하다.

→ 현장대응자의 전문성 강화가 성공적인 재난대비와 대응의 핵심!

쓰나미를 비켜간 마을 (영상)

사례(2) 고양 처음소 화재

대응백서

○ 일 시: 2018. 10. 7.(일) ~ 10.8.(월), 총 17시간

○장 소: 고양시 덕양구 ㈜대한송유관공사 경인지사, 옥외저장탱크 T-303C

() 원 인: 풍등불씨에 의한 잔디밭에 붙은 불 (※ 재산피해 약 77억)

○ 발생단계

《 고양 저유소화재 진행단계 》

1단계

유증기 배출

2단계 잔디 화재 3단계

화염 역화

4단계

5단계

증기운 폭발

저장탱크 화재

·휘발유 탱크 주입 ·뱨얪괎깒

·유증기배출 및 체류

· 잔디 예초직업 실시

·풍등, 잔디 화재

·연소가속화

(유증기,경사면 등)



·통기관 내부화염 역화 ·폼 방출설비 충격 ·열 취약부분(배관)

·잔디회염 통기관 접근 ·탱크내부 증기운 폭발 ·회재·폭발 영향 예측

·인화방지망 노후 ·고정형자붕 날아감 ·내부온도(약1,500°C)

감사합니다!