
제2장

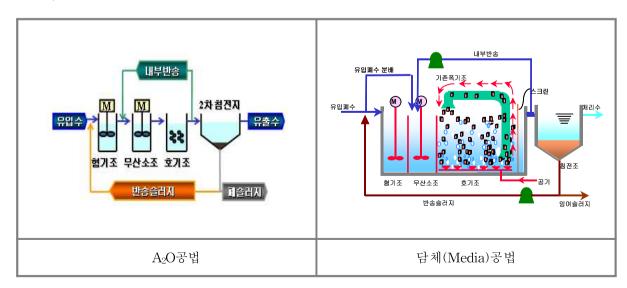
공공하수처리시설

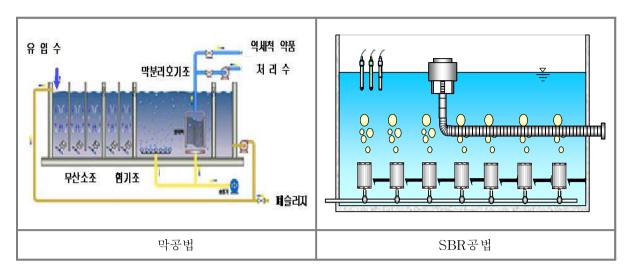
- 2.1 현황
- 2.2 전체 악취물질 측정·분석
- 2.3 발생원별 악취물질 측정·분석
- 2.4 문제점 및 개선방안

제2장 공공하수처리시설

2.1 현황

2.1.1 개요


공공하수처리시설에 대한 사례집 자료는 2014년~2018년도에 악취기술진단을 실시했던 363개 처리시설의 악취물질 측정·분석 결과를 기초로 작성하였다.


<표 2-1> 처리공정별 악취물질 시료채취 현황

처리	공정!				전	처리공장	3		생물학적	처리공정
시설수 (개소)	(개소) (개)		소계	중계 펌프장	전처	리시설	유량 조정조	1차침전지	생물반응3 (혐기, 호기	
363	7,92	20	2,510	39	1,	469	373	629	573	96
				슬러지처	리공정				악취방	지시설
소계	소계 농축시설		축시설	농축저	류조	슬러지	l 저 류 조	탈수시설	유입구	배출구
919			62	253	}	1.	50	454	2,658	1,164

2.1.2 하수처리공법 현황

최근 하수처리방법은 고도처리방식을 적용한 A2O공법, 담체(Media)공법, 막공법, SBR공법 등 다양한 공법으로 처리되고 있으며, 주요 공법별 처리공정은 아래와 같다.

<그림 2-1> 주요 공법별 처리공정도

2.1.3 주요 처리공정별 악취측정 지점 현황

악취측정 지점의 명칭은 처리시설 및 처리공법에 따라 상이하므로 공정별로 유 사한 처리기능을 수행하는 지점으로 통합 분류하였으며, 주요 처리공정별 악취 측정 지점은 아래와 같다.

<표 2-2> 처리공정별 주요 악취측정 지점

	구 분	
처리공정	발생원	주요 측정지점
	중계펌프장	수로부, 중계펌프장 내부 및 실내공간
전처리공정	전처리시설	유입 및 침사수로, 스크린, 침사제거기, 침사지 내부, 협잡물 및 침사물 이송컨베이어, 침사물 및 협잡물 저장소, 전처리실 실내
	유량조정조	유량조정조 내부 및 실내공간
	1차침전지	1차침전지 내부 및 주변, 수로부(유입, 유출)
생물학적	생물반응조	혐기조, 무산소조, 호기조
처리공정	2차침전지	2차침전지 내부 및 주변, 수로부(유입, 유출)
	농축시설	기계식 농축기 주변
슬러지	농축저류조	중력식 농축저류조(생 및 잉여슬러지, 혼합슬러지, 소화슬러지)
처리공정	슬러지저류조	생 및 잉여 슬러지저류조
	탈수시설	탈수기 주변, 탈수케이크 저장시설, 탈수기실 실내공간
악취	방지시설	유입구, 배출구

🔵 한국환경광단

2.2 전체 악취물질 측정·분석

처리시설 분류는 전처리공정(중계펌프장, 전처리시설, 유량조정조, 1차침전지), 생물학적처리공정(생물반응조(혐기, 호기), 2차침전지), 슬러지처리공정(농축시설, 농축저류조, 슬러지저류조, 탈수시설), 악취방지시설(유입구, 배출구)로 구분하였다. 악취물질 측정·분석 결과의 통계값은 복합악취의 희석배수 및 지정악취물질의 농도를 산술평균을 사용하여 악취농도로 제시하였으며, 통계값 적용에 있어 불검출된 측정값은 통계분석에서 제외하였다.

2.2.1 복합악취

가. 전처리 및 생물학적처리공정

전처리공정의 복합악취(평균치)는 1차침전지가 4,628배로 상대적으로 높은 상태이고, 유량조정조(3,533배), 중계펌프장(2,422배), 전처리시설(2,220배) 순으로나타났다. 미생물을 이용한 생물학적처리공정에서는 혐기조가 2,083배로 호기조(284배) 대비 높은 상태이며 2차침전지(125배)에서 가장 낮은 복합악취를 보이고 있다.

<표 2-3> 전처리 및 생물학적처리공정 평균 복합악취

		전처리공정			생	물학적처	 리공정
구 분	중계펌프장 전처리시설 (침사제거기, 스크린		유량	4 뒤 뒤 뭐 ㄲ	생물는	반응조	0 뒤 뒤 뭐 뭐
			조정조	1차침전지	혐기조	호기조	2차침전지
평균 복합악취(배)	2,422	2,220	3,533	4,628	2,083	284	125
전체 시료수(개)	39	1,469	373	629	305	268	96

<그림 2-2> 처리공정(전처리 및 생물학적처리공정) 평균 복합악취

나. 슬러지처리공정 및 악취방지시설

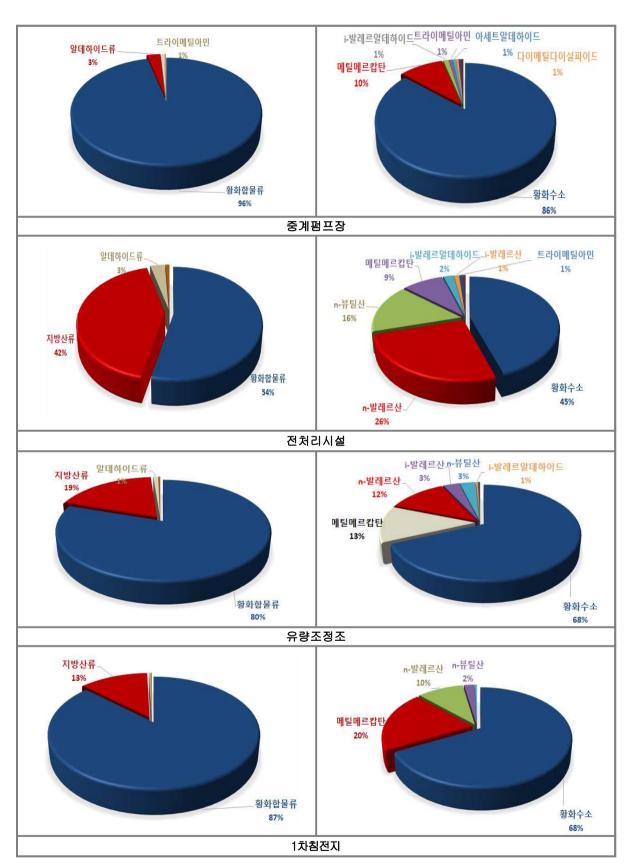
슬러지처리공정에서의 복합악취는 슬러지저류조(생슬러지)에서 31,738배로 상대적으로 높게 발생하고 있으며, 농축시설(농축조) 12,137배, 슬러지저류조(잉여슬러지) 3,752배, 탈수시설(케이크호퍼실) 4,808배, 농축시설(농축기) 2,700배, 탈수시설(탈수기실) 2,559배순으로 나타났다.

악취방지시설에서는 유입구 3,530배, 배출구 2,996배로 차이가 크지 않은 것으로 나타났다.

<표 2-4> 슬러지처리공정 및 악취방지시설 평균 복합악취

			슬러기	디처리공정			악취방	지시설	
구 분	농축	시설	슬러지	저류조	탈수	≻시설	0017	= _	
	농축기	농축조	생슬러지	잉여슬러지	탈수기실	케이크호퍼실	유입구	배출구	
평균 복합악취(배)	2,700	12,137	31,738	3,752	2,559	4,808	3,530	2,996	
전체 시료수(개)	62	212	41	150	454	292	2,658	1,164	

<그림 2-3> 처리공정(슬러지처리공정 및 악취방지시설) 평균 복합악취


2.2.2 지정악취물질

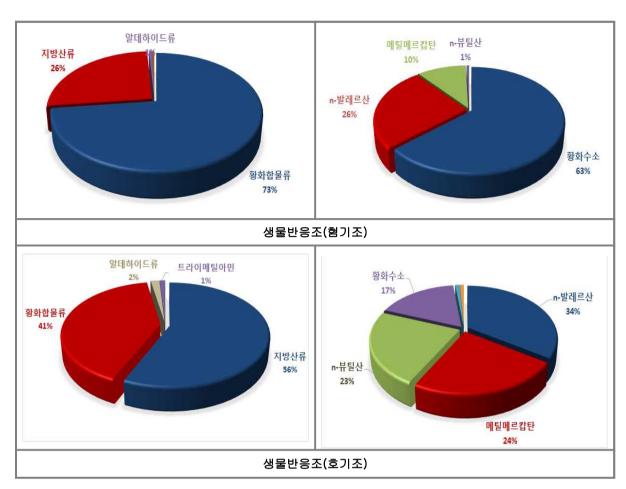
가. 전처리공정

전처리공정(중계펌프장, 전처리시설, 유량조정조, 1차침전지)의 계열별 기여도는 황화합물류 및 지방산류가 높은 상태이며, 황화합물류 중 황화수소, 지방산류 중 n-발레르산의 기여도가 높은 것으로 나타났다.

<표 2-5> 전처리공정 지정악취물질 평균 농도

	구 분						전:	처리공	정(pp	m)				
	지정악취물질(pr	m)	중	계펌프	.장	전처리	시설(참	사제거기)	유	량조정	조	1	차침전	N .
	항목	최소 감지농도	평균	최대	시료수 (개)									
	암모니아	1.5	0.200	0.60	5	0.702	32.9	141	0.219	6.70	85	0.325	7.90	102
	트라이메틸아민	0.000032	0.001	0.00	1	0.004	0.04	17	0.002	0.03	35	0.002	0.01	20
ē.	황화수소	0.00041	1.324	13.14	20	2.506	177.4	619	6.804	274.0	314	9.564	249.0	392
황 화 합	에틸메르캅탄	0.00007	0.025	0.11	19	0.084	3.28	490	0.212	3.54	274	0.483	55.6	264
물류	다이메틸설파이드	0.003	0.059	0.60	15	0.024	1.10	347	0.045	0.97	202	0.080	6.23	172
71	다이메틸다이설파이드	0.0022	0.047	0.46	11	0.027	1.36	245	0.091	3.99	160	0.153	4.54	87
	아세트알데하이드	0.0015	0.036	0.09	12	0.096	8.99	170	0.041	0.71	151	0.025	0.16	115
알 데	프로피온알데하이드	0.001	0.010	0.02	7	0.015	0.29	76	0.009	0.03	104	0.008	0.03	45
하 이	뷰틸알데하이드	0.00067	0.012	0.02	12	0.020	0.42	135	0.019	0.11	141	0.014	0.06	94
드류	n-발레르알데하이드	0.00041	0.004	0.01	6	0.011	0.08	25	0.019	0.22	23	0.007	0.02	10
π	i-발레르알데하이드	0.0001	0.004	0.00	1	0.030	0.26	14	0.011	0.02	8	0.006	0.01	1
	스타이렌	0.035	0.011	0.02	10	0.009	0.16	167	0.011	0.31	131	0.013	0.45	129
	톨루엔	0.33	0.087	0.29	10	0.095	1.32	179	0.122	4.41	151	0.217	2.31	134
V O	자일렌	0.16	0.050	0.17	10	0.024	0.57	178	0.027	0.87	151	0.036	0.84	133
С	메틸에틸케톤	0.44	0.018	0.04	9	0.014	0.10	167	0.007	0.07	132	0.018	0.95	126
S 류	메틸아이소뷰틸케톤	0.17	0.004	0.01	10	0.004	0.03	163	0.004	0.12	128	0.005	0.02	115
	뷰틸아세테이트	0.008	0.014	0.04	10	0.010	0.05	116	0.011	0.37	98	0.009	0.08	80
	i-뷰틸알코올	0.011	0.009	0.02	9	0.015	0.29	104	0.006	0.12	76	0.017	0.28	72
	프로피온산	0.0057	-	-	-	0.165	0.46	13	0.561	6.86	19	0.274	0.73	9
지 방	n-뷰틸산	0.00019	-	ı	_	0.409	3.80	27	0.146	0.78	24	0.147	0.27	14
산 류	n-발레르산	0.000037	_	ı	-	0.128	0.37	12	0.107	0.41	11	0.127	0.31	5
	i−발레르산	0.000078	-	-	-	0.012	0.01	1	0.060	0.09	3	0.012	0.01	1

<그림 2-4> 전처리공정 지정악취물질 계열별 및 항목별 기여도


나. 생물학적처리공정

생물학적처리공정 [생물반응조(혐기조), 생물반응조(호기조)] 의 계열별 기여도는 황화합물류 및 지방산류가 높은 비율을 차지하며, 혐기조는 황화합물류의 황화수소, 호기조는 지방산류의 n-발레르산 기여도가 높은 상태이다.

<표 2-6> 생물학적처리공정 지정악취물질 농도

	구 분				4	생물학적	처리공	정(ppm)		
	지정악취물질(戊	pm)	생물	반응조(혐	기조)	생물변	반응조(호	기조)	2	?차침전기	J
	항목	최소 감지농도	균 평	최대	시료수 (개)	평	최대	시료수 (개)	평	최대	시료수 (개)
	암모니아	1.5	0.114	0.58	29	0.105	0.45	35	1	-	-
	트라이메틸아민	0.000032	0.002	0.01	3	0.002	0.01	5	1	-	_
-1	황화수소	0.00041	5.454	169.7	214	0.382	10.6	72	0.017	0.11	21
황 화 합	메틸메르캅탄	0.00007	0.151	2.23	188	0.089	1.53	39	0.005	0.01	12
물류	다이메틸설파이드	0.003	0.042	1.32	170	0.028	1.36	105	0.009	0.04	20
	다이메틸다이설파이드	0.0022	0.047	2.03	97	0.048	1.93	51	0.003	0.01	10
	아세트알데하이드	0.0015	0.020	0.08	41	0.014	0.06	30	-	-	-
알 데	프로피온알데하이드	0.001	0.011	0.04	12	0.008	0.01	5	-	-	-
하 이	뷰틸알데하이드	0.00067	0.011	0.03	38	0.011	0.07	33	_	_	-
드류	n-발레르알데하이드	0.00041	0.006	0.01	2	0.005	0.01	3	_	_	-
	i-발레르알데하이드	0.0001	0.007	0.01	1	0.005	0.01	1	_	_	-
	스타이렌	0.035	0.010	0.02	46	0.011	0.02	40	-	-	-
	톨루엔	0.33	0.075	0.50	46	0.030	0.12	41	-	-	-
V O	자일렌	0.16	0.018	0.06	46	0.018	0.04	42	-	-	-
С	메틸에틸케톤	0.44	0.009	0.02	30	0.011	0.02	25	-	-	-
S 류	메틸아이소뷰틸케톤	0.17	0.005	0.01	33	0.004	0.01	18	-	-	-
	뷰틸아세테이트	0.008	0.008	0.02	16	0.010	0.04	14	-	-	-
	i-뷰틸알코올	0.011	0.016	0.05	13	0.014	0.03	12	-	-	_
	프로피온산	0.0057	0.041	0.07	3	0.093	0.10	3	1	-	-
지 방	n−뷰틸산	0.00019	0.022	0.04	3	0.235	0.35	4	-	-	-
산 류	n-발레르산	0.000037	0.199	0.45	7	0.068	0.08	5	ı	-	-
	i−발레르산	0.000078	ı	-	-	ı	-	-	ı	_	-

주) 2차침전지는 악취발생이 낮은 영향으로 주요 측정항목이 황화합물류임.

<그림 2-5> 생물학적처리공정 지정악취물질 계열별 및 항목별 기여도

다. 슬러지처리공정

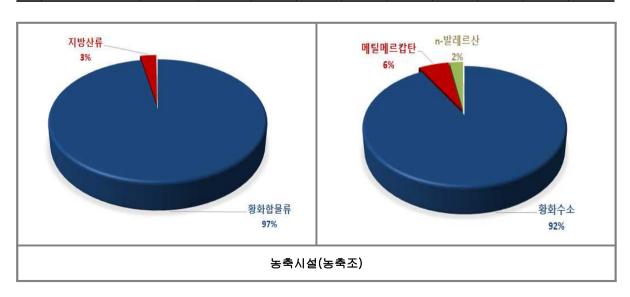
슬러지처리공정 [농축시설(농축기, 농축조), 슬러지저류조(생 및 잉여슬러지), 탈수시설(탈수기실, 케이크호퍼실)] 의 계열별 기여도는 대부분 황화합물류가 높은 비율을 차지하고 있으나, 잉여슬러지저류조의 경우 지방산류가 높게 나타났다. 항목별 기여도는 황화합물류 중 황화수소, 지방산류 중 n-발레르산의 기여도가 높게 나타났다.

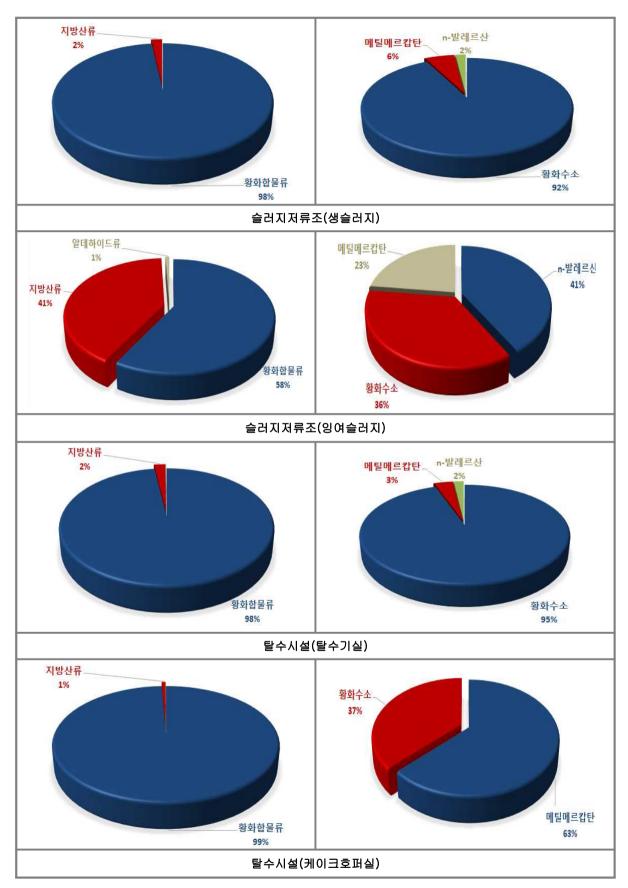
<표 2-7> 슬러지처리공정(농축시설, 생슬러지저류조) 지정악취물질 농도

 구 분					슬러	I지처리·	공정			
지정악취물질(ppm)		농축시설(농축기)			농축	시설(농	축조)	슬러지저류조(생슬러지)		
항목	최소 감지농도	평균	최대	시료수 (개)	평균	최대	시료수 (개)	평균	최대	시료수 (개)
암모니아	1.5	_	_	-	0.313	2.000	37	0.278	1.200	8
트라이메틸아민	0.000032	_	_	_	0.001	0.002	5	0.001	0.002	2

<표 2-7> 계 속

	구 분					슬러지:	처리공정	g(ppm)			
	지정악취물질(p	opm)	농축	시설(농 :	축기)	농축	시설(농	축조)	슬러지기	더류조(상	슬러지)
	항목	최소 감지농도	평	최대	시료수 (개)	평균	최대	시료수 (개)	평균	최대	시료수 (개)
황	황화수소	0.00041	1.668	24.6	33	80.77	930.7	165	285.7	1,927	35
0 화 합	메틸메르캅탄	0.00007	1.141	15.4	15	0.868	17.1	96	2.935	17.09	19
물	다이메틸설파이드	0.003	0.069	0.458	16	0.050	0.756	76	0.049	0.173	6
류	다이메틸다이설파이드	0.0022	0.087	0.760	11	0.158	1.735	41	0.024	0.080	4
	아세트알데하이드	0.0015	-	-	-	0.047	0.428	51	0.035	0.140	10
알 데	프로피온알데하이드	0.001	-	-	-	0.010	0.034	29	0.004	0.008	7
하 이	뷰틸알데하이드	0.00067	-	-	_	0.017	0.065	45	0.010	0.017	9
드류	n-발레르알데하이드	0.00041	ı	-	_	0.007	0.018	13	0.000	0.000	1
,,	i-발레르알데하이드	0.0001	-	-	-	0.016	0.034	6	0.015	0.015	1
	스타이렌	0.035	ı	-	_	0.011	0.310	53	0.011	0.050	10
	톨루엔	0.33	-	-	_	0.347	3.490	53	0.544	2.400	10
V	자일렌	0.16	ı	-	_	0.019	0.360	53	0.041	0.330	10
O C	메틸에틸케톤	0.44	-	-	_	0.073	3.190	51	0.011	0.030	10
S 류	메틸아이소뷰틸케톤	0.17	ı	-	_	0.003	0.020	45	0.003	0.010	8
	뷰틸아세테이트	0.008	-	-	-	0.007	0.040	33	0.011	0.050	8
	i-뷰틸알코올	0.011	-	-	_	0.016	0.120	35	0.016	0.073	7
	프로피온산	0.0057	-	-	_	0.321	0.531	3	0.150	0.150	1
지 방	n-뷰틸산	0.00019	-	-	_	0.097	0.191	4	0.048	0.078	2
산 류	n-발레르산	0.000037	_	-	-	0.206	0.438	5	0.525	0.525	1
	i-발레르산	0.000078	-	-	-	-	-	-	-	-	-


주) 농축기실은 실내공간으로 주요 측정항목이 황화합물류임.

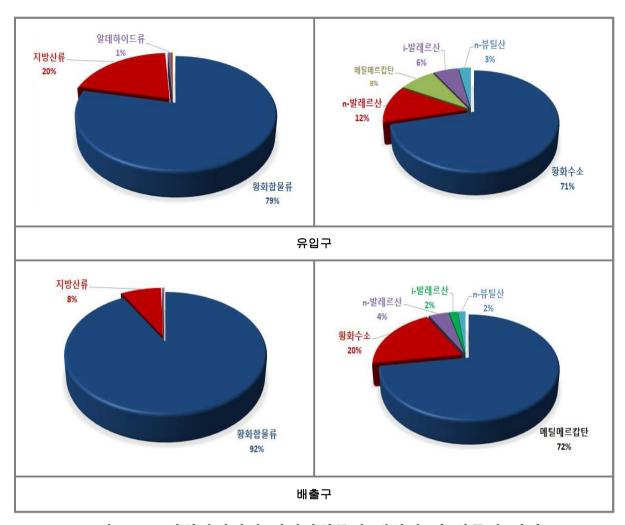

<표 2-8> 슬러지처리공정(잉여슬러지저류조, 탈수시설) 지정악취물질 농도

구 분					슬러	지처리	공정			
지정악취물질(ppm)		슬러지저류조(잉여슬러지			탈수시	l설(탈수	·기실)	탈수시설(케이크호퍼실)		
항목	최소 감지농도	평균	최대	시료수 (개)	평균	최대	시료수 (개)	평균	최대	시료수 (개)
암모니아	1.5	0.106	0.200	12	0.398	1.900	7	5.385	18.80	8
트라이메틸아민	0.000032	_	_	_	0.002	0.004	4	0.001	0.001	3

<표 2-8> 계 속

	구 분				:	슬러지쳐	허리공정	(ppm)				
	지정악취물질(p	pm)	슬러지저	류조(잉0	ᅧ슬러지)	탈수시	시설(탈수	·기실)	탈수시설(케이크호퍼실)			
	항목	최소 감지농도	평균	최대	시료수 (개)	평균	최대	시료수 (개)	평균	최대	시료수 (개)	
 황	황화수소	0.00041	12.857	898.8	110	45.6	780.9	223	53.8	3,599	153	
화 합	메틸메르캅탄	0.00007	0.594	18.9	85	0.294	16.5	167	15.6	1,428	154	
물	다이메틸설파이드	0.003	0.181	5.094	92	0.021	0.222	134	3.363	393.8	145	
류	다이메틸다이설파이드	0.0022	0.099	0.975	49	0.033	1.856	108	2.310	248.3	121	
알	아세트알데하이드	0.0015	0.019	0.086	19	0.021	0.075	9	0.021	0.047	11	
데	프로피온알데하이드	0.001	0.006	0.014	6	0.010	0.018	5	0.002	0.004	4	
하 이	뷰틸알데하이드	0.00067	0.015	0.042	15	0.010	0.029	8	0.016	0.026	7	
드류	n-발레르알데하이드	0.00041	0.004	0.010	3	-	0.000	-	-	0.000	-	
듀	i-발레르알데하이드	0.0001	0.008	0.008	1	-	0.000	-	-	0.000	-	
	스타이렌	0.035	0.004	0.010	17	0.008	0.020	10	0.007	0.020	10	
	톨루엔	0.33	0.193	1.360	17	0.281	1.260	10	0.725	5.190	10	
V O	자일렌	0.16	0.014	0.060	17	0.031	0.140	10	0.020	0.050	10	
С	메틸에틸케톤	0.44	0.008	0.030	15	0.012	0.020	10	0.010	0.030	10	
S 류	메틸아이소뷰틸케톤	0.17	0.002	0.010	17	0.006	0.012	10	0.006	0.020	7	
	뷰틸아세테이트	0.008	0.005	0.020	13	0.009	0.020	8	0.015	0.040	6	
	i-뷰틸알코올	0.011	0.013	0.030	11	0.016	0.027	7	0.009	0.030	6	
T1	프로피온산	0.0057	_	-	-	0.096	0.096	1	-	-	-	
지 방	n−뷰틸산	0.00019	0.075	0.075	1	0.047	0.047	1	0.271	0.271	1	
산 류	n−발레르산	0.000037	0.205	0.424	6	0.081	0.198	3	-	0.000	-	
	i-발레르산	0.000078	-	_	-	-	_	-	0.071	0.071	1	

<그림 2-6> 슬러지처리공정 지정악취물질 계열별 및 항목별 기여도


라. 악취방지시설

악취방지시설로 유입되는 주요 지정악취물질의 기여도는 황화합물류 및 지방 산류가 높은 비율을 차지하며, 항목별 기여도는 황화수소가 상대적으로 높게 나타났다.

<표 2-9> 악취방지시설 지정악취물질 농도

	구 분				악취!	방지시설(ppm)		
	지정악취물질(pi	om)		유입구			배출구		처리효율
	항목	최소 감지농도	평균	최대	시료수 (개)	평균	최대	시료수 (개)	(평균,%)
	암모니아	1.5	5.255	3,356	793	0.454	54.2	563	91
	트라이메틸아민	0.000032	0.004	0.169	181	0.003	0.063	91	25
=1	황화수소	0.00041	12.50	4,917	1,681	6.372	457.2	944	49
황 화	메틸메르캅탄	0.00007	0.251	18.6	1,273	3.983	1,772	818	-
합 물 류	다이메틸설파이드	0.003	0.059	4.744	955	0.050	4.672	694	-
TT	다이메틸다이설파이드	0.0022	0.100	5.357	667	0.053	3.084	529	15
	아세트알데하이드	0.0015	0.038	1.438	1,095	0.039	2.905	901	47
알 데	프로피온알데하이드	0.001	0.012	0.583	630	0.015	1.054	490	-
하 이	뷰틸알데하이드	0.00067	0.021	0.843	960	0.019	1.507	792	-
드류	n-발레르알데하이드	0.00041	0.009	0.076	236	0.010	0.077	134	-
	i-발레르알데하이드	0.0001	0.017	0.294	101	0.012	0.046	71	10
	스타이렌	0.035	0.012	1.067	1,029	0.011	1.031	856	-
	톨루엔	0.33	0.181	6.010	1,127	0.133	5.760	968	29
V	자일렌	0.16	0.021	1.032	1,118	0.023	0.980	955	8
0 C S	메틸에틸케톤	0.44	0.014	0.370	1,006	0.015	0.960	811	27
s 류	메틸아이소뷰틸케톤	0.17	0.004	0.090	989	0.005	0.360	840	-
	뷰틸아세테이트	0.008	0.010	0.390	750	0.010	0.150	604	-
	i-뷰틸알코올	0.011	0.016	2.974	575	0.012	0.300	444	-
	프로피온산	0.0057	0.244	2.794	113	0.395	5.073	80	-
지 방	n−뷰틸산	0.00019	0.233	3.658	172	0.246	3.801	128	25
산 류	n-발레르산	0.000037	0.191	2.291	68	0.124	0.692	41	-
	i-발레르산	0.000078	0.190	0.988	16	0.114	0.491	13	-

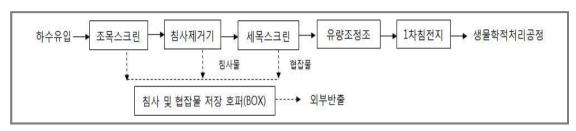
🔘 한국환경공단

<그림 2-7> 악취방지시설 지정악취물질 계열별 및 항목별 기여도

2.2.3 총괄(복합악취 및 지정악취물질)

하수처리공정에서의 복합악취는 슬러지처리공정에서 상대적으로 높게 발생하고 있으며, 생물반응조(호기조) 및 2차침전지에서 낮은 복합악취를 보이고 있다. 지정악취물질은 계열별 기여도는 황화합물류 및 지방산류가 높은 비율을 차지하고 있으며, 항목별 기여도는 황화수소, 메틸메르캅탄, n-발레르산 등이 높게 나타났다.

<표 2-10> 처리공정별 복합악취 및 주요 지정악취물질 기여도


	7 H	복합악취(평균)	주요 지정악취	물질 기여도(%)	
	구 분	(84)	계열별	항목별	
	중계펌프장	2,422	황화합물류 96%	황화수소 86%, 메틸메르캅탄 10%	
전처리공정	전처리시설	2,220	황화합물류 54%, 지방산류 42%	황화수소 45%, n-발레르산 26%	
선지니증형	유량조정조	3,533	황화합물류 80%, 지방산류 19%	황화수소 68%, n-발레르산 12%	
	1차침전지	4,628	황화합물류 87%, 지방산류 13%	황화수소 68%, n-발레르산 10%	
	생물반응조(혐기조)	2,083	황화합물류 73%, 지방산류 26%	황화수소 63%, n-발레르산 26%	
생물학적 처리공정	생물반응조(호기조)	284	황화합물류 41%, 지방산류 56%	메틸메르캅탄 24%, n-발레르산 34%	
	2차침전지	125	_	-	
	농축시설(농축기)	2,700	_	_	
	농축시설(농축조)	12,137	황화합물류 97%, 지방산류 3%	황화수소 92%, n-발레르산 2%	
슬러지	생슬러지저류조	31,738	황화합물류 98%, 지방산류 2%	황화수소 92%, n-발레르산 2%	
처리공정	잉여슬러지저류조	3,752	황화합물류 58%, 지방산류 41%	황화수소 36%, n-발레르산 41%	
	탈수기실	2,559	황화합물류 98%, 지방산류 2%	황화수소 95%, n-발레르산 2%	
	케이크호퍼실	4,808	황화합물류 99%	메틸메르캅탄 63%, 황화수소 95%	
악취	유입구	3,530	황화합물류 79%, 지방산류 20%	황화수소 71%, n-발레르산 12%	
방지시설	배출구	2,996	황화합물류 92%, 지방산류 8%	메틸메르캅탄 72%, n-발레르산 4%	

🔵 한국환경공단

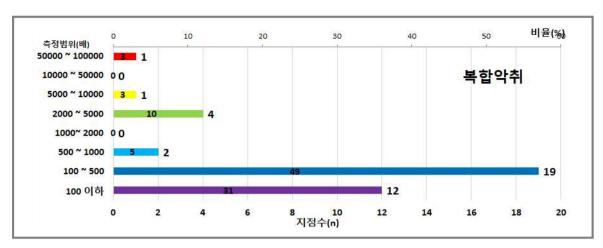
2.3 발생원별 악취물질 측정·분석

2.3.1 전처리공정

전처리공정은 유입하수 중에 포함되어 있는 협잡물, 모래 및 비부패성 무기질 입자를 제거할 목적으로 설치된 시설로서 대부분 물리적방법에 의한 처리방식 이다. 일반적으로 유입수로, 스크린시설, 침사제거기로 구성되어 있으며, 처리장 여건에 따라 중계펌프장, 유량조정조, 1차침전지가 설치되어 운영하고 있다.

<그림 2-8> 전처리공정 주요 처리계통도

가. 중계펌프장

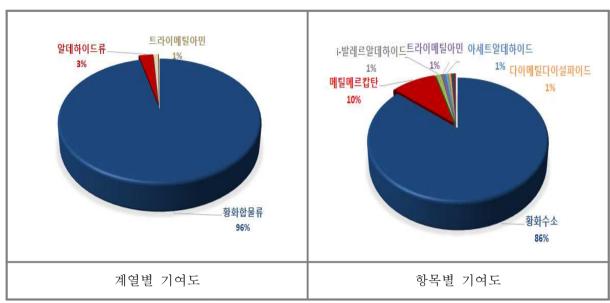

중계펌프장은 처리구역에서 발생된 하수를 하수처리시설까지 자연유하 방식으로는 이송이 불가하여 중간 지점에 펌프장을 설치·압송하는 시설이며, 주요 측정지점은 펌프장 실내공간이다.

(1) 복합악취

중계펌프장에서 발생하는 복합악취 측정범위는 $100\sim500$ 배가 $49\%로 높은 비율을 차지하고 100배 이하 31%, <math>2,000\sim5,000$ 배 10%순으로 나타났으며, 5,000배를 초과하는 경우는 5%로 낮은 비율을 보이고 있다.

<표 2-11> 중계펌프장 복합악취 측정범위

	복합악취(총 시료수 : 39개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	5	2
2,000 ~ 5,000	10	4
500 ~ 1,000	5	2
100 ~ 500	49	19
100 이하	31	12


<그림 2-9> 중계펌프장 복합악취 측정범위

(2) 지정악취물질

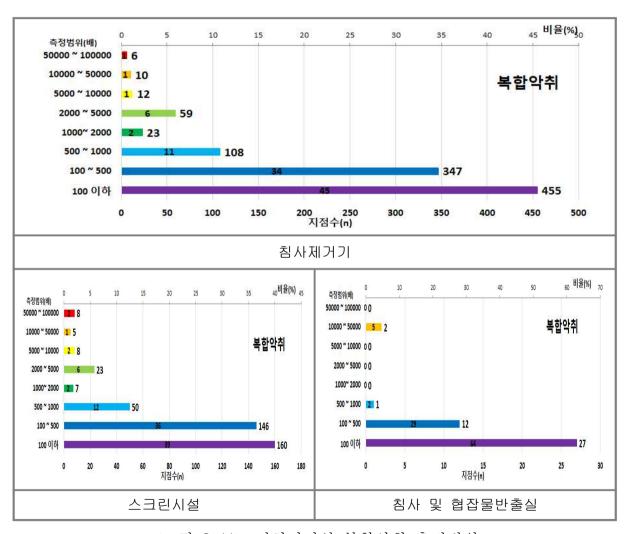
중계펌프장에서 발생하는 지정악취물질 기여도는 황화합물류가 96%이고 이 중 황화수소가 86%로 대부분을 차지하며, 그 외 알데하이드류가 3%로 나타났 으며 지방산류는 불검출 되었다.

<표 2-12> 중계펌프장 지정악취물질 농도 및 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.2	20	_	40	20	20	-	5
	트라이메틸아민	0.000032	0.001	100	_	-	-	_		1
황	황화수소	0.00041	1.32	_	_	40	40	10	10	20
화 합	메틸메르캅탄	0.00007	0.025	-	21	74	5	_		19
물	다이메틸설파이드	0.003	0.06	7	52	27	7	7	-	15
류	다이메틸다이설파이드	0.0022	0.047	19	36	36	9	-	-	11
 알	아세트알데하이드	0.0015	0.04	-	17	83	-	-	-	12
데	프로피온알데하이드	0.001	0.01	-	29	71	-	-	-	7
하 이	뷰틸알데하이드	0.00067	0.012		8	92	-	-	-	12
<u>_</u>	n-발레르알데하이드	0.00041	0.004	34	33	33	-	-	-	6
류	i-발레르알데하이드	0.0001	0.004	-	100	-	-	-	-	1
	스타이렌	0.035	0.01	40	_	60	-	-	-	10
	톨루엔	0.33	0.09	10	-	60	30	-	-	10
V	자일렌	0.16	0.05	40	_	40	20	-	-	10
C	메틸에틸케톤	0.44	0.02	22	_	78	-	-	-	9
S 류	메틸아이소뷰틸케톤	0.17	0.01	60	_	40	-	-	-	10
뉴	뷰틸아세테이트	0.008	0.01	40	-	60	-	-	-	10
	i-뷰틸알코올	0.011	0.01	33	-	67	_	_	-	9

※ 악취기여도(%): { (개별악취물질농도/개별악취물질의최소감지농도) [(개별악취물질농도/개별악취물질의최소감지농도)]의총합 <그림 2-10> 중계펌프장 지정악취물질 기여도

나. 전처리시설(침사제거기, 스크린시설, 침사 및 협잡물반출실)

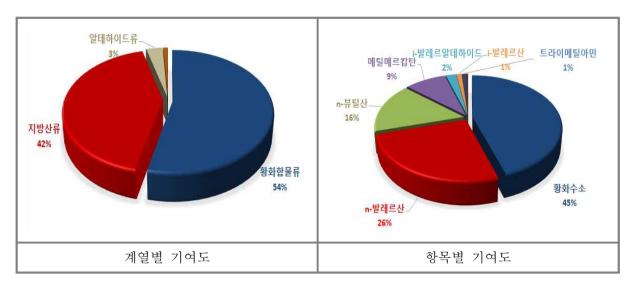

유입하수 중에 포함되어 있는 협잡물, 모래 및 비부패성 무기질 입자를 제거할 목적으로 설치된 시설로서 스크린시설, 침사제거기, 침사 및 협잡물반출실 등이 설치되어 있으며, 주요 측정지점은 시설 내부 및 주변 실내공간이다.

(1) 복합악취

- 침사제거기: 복합악취 범위는 100배 이하가 45%로 높은 비율을 차지하고 100~500배 34%, 500~1,000배 11%순이며, 1,000배를 초과하는 시설은 10%인 것으로 나타났다.
- 스크린시설 : 복합악취 범위는 100배 이하가 39%, 100~500배 36%, 500 ~1,000배 12%순이며, 1,000배를 초과하는 시설은 13%로 나타났다.
- 침사 및 협잡물반출실 : 복합악취 범위는 100배 이하가 64%로 높은 비율을 차지하고 100~500배 29%, 500~1,000배 2%순이며, 1,000배를 초과하는 시설은 5%로 나타났다.

<표 2-13> 전처리시설 복합악취 측정범위

 구 분	전처리시설(총 시료수 : 1,469개)									
- 구 H O (III)	침사제거기		스크림	 일시설	침사 및 협잡물반출실					
측정범위(배) 	비율(%)	시료수(개)	비율(%)	시료수(개)	비율(%)	시료수(개)				
5,000 초과	2	28	5	21	5	2				
2,000 ~ 5,000	6	59	6	23	_	_				
1,000 ~ 2,000	2	23	2	7	_	_				
500 ~ 1,000	11	108	12	50	2	1				
100 ~ 500	34	347	36	146	29	12				
100 이하	45	455	39	160	64	27				


<그림 2-11> 전처리시설 복합악취 측정범위

(2) 지정악취물질

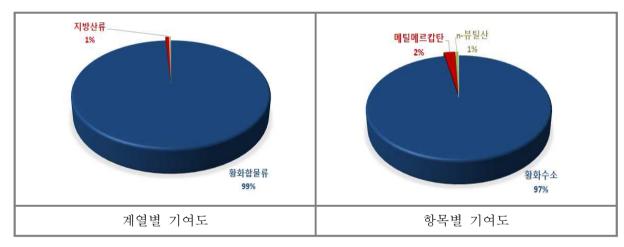
○ 침사제거기 : 지정악취물질 계열별 기여도는 황화합물류 54%, 지방산류 42%, 알데하이드류 3%순이며, 항목별 기여도는 황화수소 45%, n-발레르산 26%, n-뷰틸산 16%순으로 나타났다.

<표 2-14> 전처리시설(침사제거기) 지정악취물질 농도 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.702	21	1	33	30	11	4	141
	트라이메틸아민	0.000032	0.004	41	53	6	-	_	_	17
畝	황화수소	0.00041	2.506	_	6	38	27	14	15	619
0 화 합	메틸메르캅탄	0.00007	0.084	_	13	67	17	3	-	490
물류	다이메틸설파이드	0.003	0.024	3	36	57	3	1	_	347
л	다이메틸다이설파이드	0.0022	0.027	16	40	40	3	1	_	245
	아세트알데하이드	0.0015	0.096	1	9	85	5	_	_	170
알 데	프로피온알데하이드	0.001	0.015	-	31	68	1	_	_	76
하 이	뷰틸알데하이드	0.00067	0.020	1	13	85	1	_	_	135
드 류	n-발레르알데하이드	0.00041	0.011	8	28	64	_	_	_	25
	i-발레르알데하이드	0.0001	0.030	-	29	64	7	_	-	14
	스타이렌	0.035	0.009	40	4	55	1	_	_	167
	톨루엔	0.33	0.095	10	_	66	21	3	-	179
V O	자일렌	0.16	0.024	28	5	67	1	1	_	178
С	메틸에틸케톤	0.44	0.014	24	4	72	-	-	_	167
S 류	메틸아이소뷰틸케톤	0.17	0.004	58	5	37	_	_	_	163
	뷰틸아세테이트	0.008	0.010	30	9	61	-	_	-	116
	i-뷰틸알코올	0.011	0.015	23	4	71	2	-	_	104
	프로피온산	0.0057	0.165	_	_	38	62	_	_	13
지 방	n−뷰틸산	0.00019	0.409	_	4	59	22	7	8	27
산 류	n-발레르산	0.000037	0.128	-	-	58	42	-	-	12
	i-발레르산	0.000078	0.012	_	_	100	-	-	-	1

<그림 2-12> 전처리시설(침사제거기) 지정악취물질 기여도

○ 스크린시설: 지정악취물질 계열별 기여도는 황화합물류 99%로 대부분을 차지하며, 항목별 기여도는 황화수소 97%, 메틸메르캅탄 2%순으로 나타 났다.

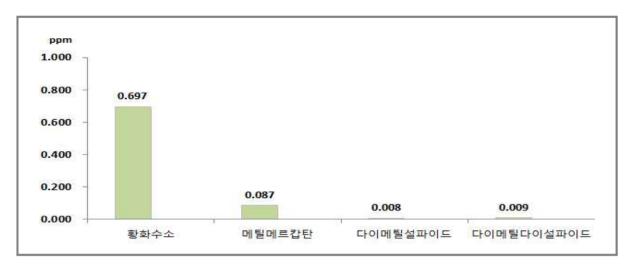

<표 2-15> 전처리시설(스크린시설) 지정악취물질 농도 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.096	21	_	53	26	_	ı	19
	트라이메틸아민	0.000032	0.001	25	75	_	_	_	ı	4
	황화수소	0.00041	48.5	1	6	33	31	13	16	216
歌 南	메틸메르캅탄	0.00007	0.202	1	15	65	15	4	1	164
물류	다이메틸설파이드	0.003	0.018	8	37	53	2	_	-	103
,,	다이메틸다이설파이드	0.0022	0.056	12	49	27	8	4	-	76
	아세트알데하이드	0.0015	0.095	-	4	88	4	4	-	25
알 데	프로피온알데하이드	0.001	0.014	6	25	69	-	-	_	16
하 이	뷰틸알데하이드	0.00067	0.027	5	15	77	5	-	_	22
드 류	n-발레르알데하이드	0.00041	0.010	-	25	75	-	-	-	4
	i-발레르알데하이드	0.0001	0.025	_	_	100	_	_	-	3

🔵 한국환경광단

<표 2-15> 계 속

	- L	최소감지농도	평균	비율(%)						시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	스타이렌	0.035	0.005	58	_	42	_	_	1	24
V	톨루엔	0.33	0.117	35	_	53	8	4	_	26
V O	자일렌	0.16	0.010	65	_	35	-	-	-	26
С	메틸에틸케톤	0.44	0.004	71	_	29	-	-	-	24
S 류	메틸아이소뷰틸케톤	0.17	0.001	79	8	13	-	-	-	24
π	뷰틸아세테이트	0.008	0.006	50	-	50	-	_	-	16
	i-뷰틸알코올	0.011	0.013	42	_	58	-	-	-	12
 	프로피온산	0.0057	0.065	-	-	100	_	_	-	3
시 방	n-뷰틸산	0.00019	0.148	-	-	75	25	_	-	4
산 류	n-발레르산	0.000037	_		_	_	_	_	-	
П	i−발레르산	0.000078	-	-	-	-	-	_	-	_



<그림 2-13> 전처리시설(스크린시설) 지정악취물질 기여도

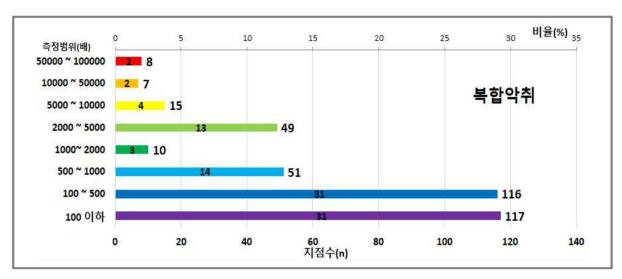
O 침사 및 협잡물반출실: 반출실 실내 공간은 지정악취물질 중 대부분 황화합물류를 측정하였으며, 황화수소 농도가 다른 항목 대비 높은 농도를 보이고 있다.

<표 2-16> 전처리시설(침사 및 협잡물반출실) 지정악취물질 농도 측정범위

	그 최소		평균	비율(%)							
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	시료수 (개)	
황	황화수소	0.00041	0.697	_	19	55	16	3	7	31	
화 합	메틸메르캅탄	0.00007	0.087	_	28	69	-	3	_	29	
물	다이메틸설파이드	0.003	0.008	9	35	56	_	-	_	23	
류	다이메틸다이설파이드	0.0022	0.009	26	39	35	-	_	ı	23	

<그림 2-14> 전처리시설(침사 및 협잡물반출실) 황화합물류 평균 농도

다. 유량조정조


유량조정조는 시간대별 유입하수량의 변동폭이 크고, 처리공법 특성상 후속 공정에 하수의 균질화 및 균등분배가 필요한 경우 일시 저류하는 시설이며, 주요 측정지점은 조 내부이다.

(1) 복합악취

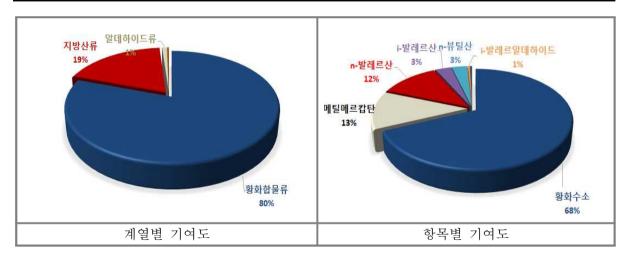
유량조정조에서 발생하는 복합악취 측정범위는 100배 이하 및 100~500배가 각각 31%로 높은 비율을 차지하고 500~1,000배 14%, 2,000~5,000배 13%순이며, 5,000배를 초과하는 경우는 8%인 것으로 나타났다.

<표 2-17> 유량조정조 복합악취 측정범위

복합악취(총 시료수 : 373개)									
측정범위(배)	비율(%)	시료수(개)							
5,000 초과	8	30							
2,000 ~ 5,000	13	49							
1,000 ~ 2,000	3	10							
500 ~ 1,000	14	51							
100 ~ 500	31	116							
100 이하	31	117							

<그림 2-15> 유량조정조 복합악취 측정범위

(2) 지정악취물질


지정악취물질 계열별 기여도는 황화합물류 80%, 지방산류 19%로 대부분을 차지하며, 항목별 기여도는 황화수소 68%, 메틸메르캅탄 13%, n-발레르산 12%순으로 나타났다.

<표 2-18> 유량조정조 지정악취물질 농도 측정범위

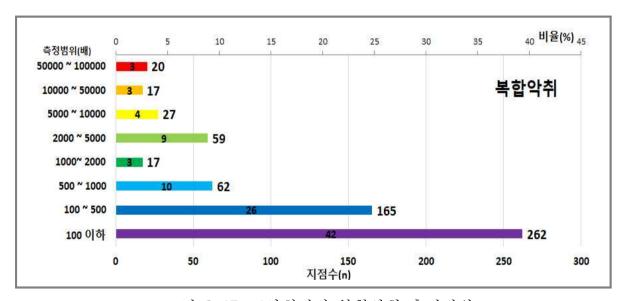
		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.219	26	_	42	27	5	-	85
	트라이메틸아민	0.000032	0.002	60	34	6	-	_	-	35
<u></u> 황	황화수소	0.00041	6.804	-	8	29	21	18	24	314
전 화 합	메틸메르캅탄	0.00007	0.212	1	10	52	25	12	ı	274
물류	다이메틸설파이드	0.003	0.045	2	23	65	10	1	-	202
11	다이메틸다이설파이드	0.0022	0.091	10	38	38	11	3	ı	160
	아세트알데하이드	0.0015	0.041	1	3	88	7	1	-	151
알 데	프로피온알데하이드	0.001	0.009	4	32	64	_	_	-	104
하 이	뷰틸알데하이드	0.00067	0.019	2	18	79	1	_	_	141
르류	n-발레르알데하이드	0.00041	0.019	4	39	52	4	_	_	23
	i-발레르알데하이드	0.0001	0.011	13	13	74	_	_	-	8

<표 2-18> 계 속

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	스타이렌	0.035	0.011	61	2	35	2	_	-	131
	톨루엔	0.33	0.122	21	-	52	25	2	-	151
V O	자일렌	0.16	0.027	44	1	52	2	1	_	151
С	메틸에틸케톤	0.44	0.007	57	2	41	-	_	_	132
S 류	메틸아이소뷰틸케톤	0.17	0.004	67	3	29	1	_	-	128
	뷰틸아세테이트	0.008	0.011	58	2	39	1	_	-	98
	i-뷰틸알코올	0.011	0.006	60	3	36	1	_	-	76
	프로피온산	0.0057	0.561	-	_	21	74	_	5	19
지 방	n−뷰틸산	0.00019	0.146	_	_	46	50	4	_	24
산 류	n-발레르산	0.000037	0.107	_	_	64	36	_	_	11
	i-발레르산	0.000078	0.060	_	_	100	_	_		3

<그림 2-16> 유량조정조 지정악취물질 기여도

라. 1차침전지


1차침전지는 유입된 하수 중에 함유된 부유물질(SS)과 비중이 가벼운 유지류 및 그리스 등의 스컴(Scum)등을 사전에 제거함으로써 생물학적 처리공정의 처리효율을 향상시키고 각종 계측기기의 손상과 오작동을 미연에 방지하기 위하여 설치된 시설이며, 주요 측정지점은 지 내부 및 실내공간이다.

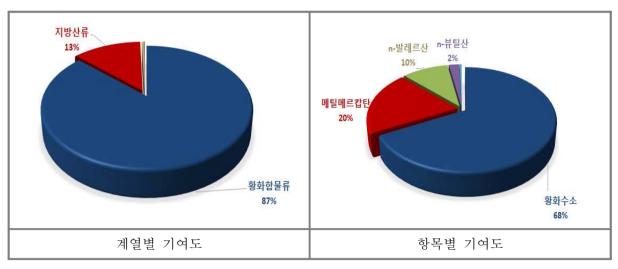
(1) 복합악취

1차침전지에서 발생하는 복합악취 측정범위는 100배 이하가 42%로 높은 비율을 차지하며, 500~1,000배 14%, 100~500배 26%, 500~1,000배 13%순이며, 1,000배 이하 78%인 것으로 나타났다.

<표 2-19> 1차침전지 복합악취 측정범위

	복합악취(총 시료수 : 629개)									
측정범위(배)	비율(%)	시료수(개)								
5,000 초과	10	64								
2,000 ~ 5,000	9	59								
1,000 ~ 2,000	3	17								
500 ~ 1,000	10	62								
100 ~ 500	26	165								
100 ଠାରି	42	262								

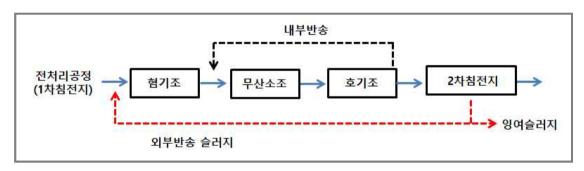
<그림 2-17> 1차침전지 복합악취 측정범위


(2) 지정악취물질

지정악취물질 계열별 기여도는 황화합물류 87%, 지방산류 13%를 차지하며, 항목별 기여도는 황화수소 68%, 메틸메르캅탄 20%, n-발레르산 10%순으로 나타났다.

<표 2-20> 1차침전지 지정악취물질 농도 측정범위

구 분		최소감지농도	평균	비율(%)						시료수
		(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.325	19	1	31	37	12	_	102
	트라이메틸아민	0.000032	0.002	85	5	10	_	_	_	20
=1	황화수소	0.00041	9.564	-	6	22	18	18	36	392
황 화	메틸메르캅탄	0.00007	0.483	2	12	45	26	12	3	264
합물	다이메틸설파이드	0.003	0.080	5	30	56	7	2	_	172
류	다이메틸다이설파이드	0.0022	0.153	11	40	34	8	3	4	87
	아세트알데하이드	0.0015	0.025	_	6	92	2	_	_	115
알 데	프로피온알데하이드	0.001	0.008	_	31	69	_	_	_	45
하 이	뷰틸알데하이드	0.00067	0.014	2	16	82	_	_	_	94
드류	n-발레르알데하이드	0.00041	0.007	_	70	30	_	_	_	10
	i-발레르알데하이드	0.0001	0.006	_	_	100	_	_	_	1
-	스타이렌	0.035	0.013	40	5	54	1	_	_	129
	톨루엔	0.33	0.217	7	-	48	35	10	_	134
V O	자일렌	0.16	0.036	37	1	57	3	2	-	133
С	메틸에틸케톤	0.44	0.018	32	1	65	1	1	_	126
S 류	메틸아이소뷰틸케톤	0.17	0.005	54	3	43	-	-	_	115
	뷰틸아세테이트	0.008	0.009	34	5	61	_	-	-	80
	i-뷰틸알코올	0.011	0.017	32	-	67	1	-	-	72
	프로피온산	0.0057	0.274		_	22	67	11	_	9
지 방	n−뷰틸산	0.00019	0.147	-	_	43	57	-	_	14
산 류	n-발레르산	0.000037	0.127	-	-	40	60	-	-	5
	i-발레르산	0.000078	0.012	-	-	100	-	-	-	1


🔘 한국환경공단

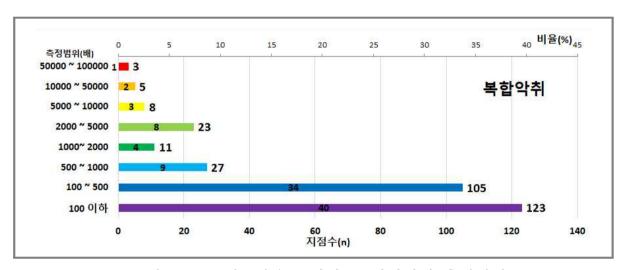
<그림 2-18> 1차침전지 지정악취물질 기여도

2.3.2 생물학적처리공정

생물학적처리공정은 하수중의 Colloid성 및 용해성 유기물을 미생물에 의해 생물학적으로 제거하는 공정으로써 하수처리 단위공정 중 핵심이 되는 주요 공정이다.

<그림 2-19> 생물학적처리공정(A₂O공법) 주요 처리계통도

가. 생물반응조(혐기조)


생물반응조(혐기조)는 혐기성 미생물을 이용하여 유기물 분해 및 인 용출작용 으로 처리수질을 개선하는 역할을 하며, 주요 측정지점은 조 내부이다.

(1) 복합악취

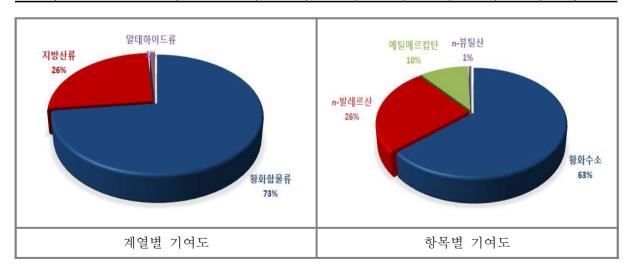
생물반응조(혐기조)에서 발생하는 복합악취 측정범위는 100배 이하가 40%로 높은 비율을 차지하고 100~500배 34%, 500~1,000배 9%순이며, 5,000배를 초과하는 경우는 5%인 것으로 나타났다.

<표 2-21> 생물반응조(혐기조) 복합악취 측정범위

복합악취(총 시료수 : 305개)								
측정범위(배)	비율(%)	시료수(개)						
5,000 초과	5	16						
2,000 ~ 5,000	8	23						
1,000 ~ 2,000	4	11						
500 ~ 1,000	9	27						
100 ~ 500	34	105						
100 이하	40	123						

<그림 2-20> 생물반응조(혐기조) 복합악취 측정범위

(2) 지정악취물질


지정악취물질 기여도는 황화합물류 73%, 지방산류 26%순이며, 황화합물류 중 황화수소가 63%, 지방산류 중 n-발레르산이 26%로 나타났다.

<표 2-22> 생물반응조(혐기조) 지정악취물질 농도 측정범위

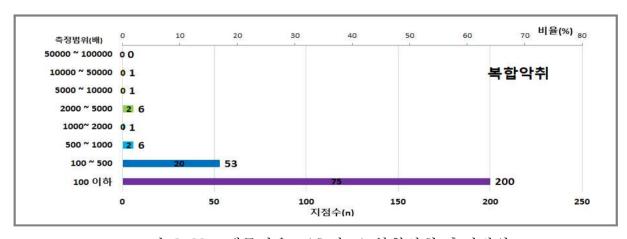
- L	최소감지농도	평균	비율(%)						시료수
구 분	(ppm)	, ,	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
암모니아	1.5	0.114	25	3	41	28	3	-	29
트라이메틸아민	0.000032	0.002	_	100	_	_	_	-	3

<표 2-22> 계 속

구 분		최소감지농도	 평균	비율(%)						시료수
		(ppm)	I F	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
황	황화수소	0.00041	5.454	1	13	31	20	14	21	214
화 합	메틸메르캅탄	0.00007	0.151	3	13	53	24	9	-	188
물	다이메틸설파이드	0.003	0.042	3	25	65	6	1	-	170
류	다이메틸다이설파이드	0.0022	0.047	10	32	53	5	_	-	97
알	아세트알데하이드	0.0015	0.020	-	22	78	-	-	_	41
르 데	프로피온알데하이드	0.001	0.011	-	42	58	-	-	_	12
하 이	뷰틸알데하이드	0.00067	0.011	_	11	89	_	-		38
⊑	n-발레르알데하이드	0.00041	0.006	-	50	50	-	-	_	2
류	i-발레르알데하이드	0.0001	0.007	_	-	100	_	-		1
	스타이렌	0.035	0.010	22	2	76	_	-		46
	톨루엔	0.33	0.075	7		73	20	_	-	46
V O	자일렌	0.16	0.018	22	2	76	_	-		46
С	메틸에틸케톤	0.44	0.009	23	3	74	_	_	-	30
S 류	메틸아이소뷰틸케톤	0.17	0.005	45	3	52			-	33
	뷰틸아세테이트	0.008	0.008	19	13	68	_	-	-	16
	i-뷰틸알코올	0.011	0.016	-	_	100	_	-		13
	프로피온산	0.0057	0.041	-	_	100	_	-	-	3
지 방	n−뷰틸산	0.00019	0.022	-	33	67	_	-	-	3
산 류	n-발레르산	0.000037	0.199	-	_	57	43	_	-	7
π	i-발레르산	0.000078	-	-	_	-	_	_		-

<그림 2-21> 생물반응조(혐기조) 지정악취물질 기여도

나. 생물반응조(호기조)

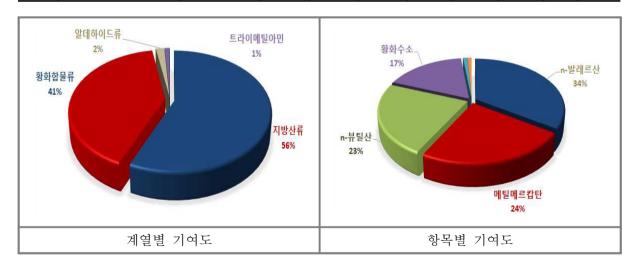

생물반응조(호기조)는 호기성 미생물을 이용하여 유기물 분해 및 질산화과정을 통해 처리수질을 개선하는 역할을 하며, 주요 측정지점은 조 내부이다.

(1) 복합악취

생물반응조(호기조)에서 발생하는 복합악취 측정범위는 100배 이하 75%, 100 ~500배 20%순이며, 500배 이하가 95%로 대부분을 차지하고 있다.

<표 2-23> 생물반응조(호기조) 복합악취 측정범위

복합악취(총 시료수 : 268개)								
측정범위(배)	비율(%)	시료수(개)						
5,000 초과	1	2						
2,000 ~ 5,000	2	6						
1,000 ~ 2,000	_	1						
500 ~ 1,000	2	6						
100 ~ 500	20	53						
100 이하	75	200						


<그림 2-22> 생물반응조(호기조) 복합악취 측정범위

(2) 지정악취물질

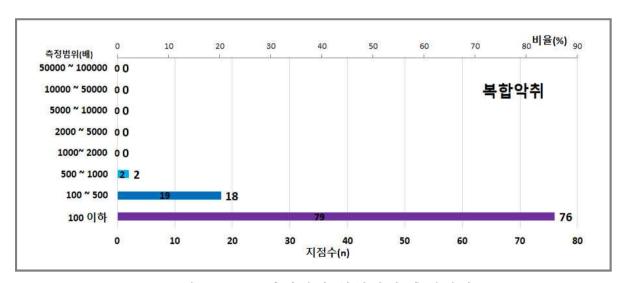
지정악취물질 계열별 기여도는 지방산류 56%, 황화합물류 41%, 알데하이드류 2%순이며, 항목별 기여도는 n-발레르산 34%, 메틸메르캅탄 24%, n-뷰틸산 23%. 황화수소 17%순으로 나타났다.

<표 2-24> 생물반응조(호기조) 지정악취물질 농도 측정범위

구 분		최소감지농도	평균		비율(%)					시료수
		(ppm)		0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.105	26	_	45	29	-	_	35
	트라이메틸아민	0.000032	0.002	80	20	_	_	_	_	5
황	황화수소	0.00041	0.382	4	32	43	13	4	4	72
화	메틸메르캅탄	0.00007	0.089	8	38	44	5	5	_	39
합 물	다이메틸설파이드	0.003	0.028	2	31	65	1	1	_	105
류	다이메틸다이설파이드	0.0022	0.048	14	39	45	-	2	_	51
 알	아세트알데하이드	0.0015	0.014	3	23	74	_	-	_	30
데	프로피온알데하이드	0.001	0.008	-	40	60	_	-	_	5
하 이	뷰틸알데하이드	0.00067	0.011	-	9	91	_	_	-	33
	n-발레르알데하이드	0.00041	0.005	-	33	67	_	-	_	3
류	i-발레르알데하이드	0.0001	0.005	-	100	_	_	-	_	1
	스타이렌	0.035	0.011	10	8	82	-	-	_	40
\	톨루엔	0.33	0.030	5	_	90	5	-	_	41
V	자일렌	0.16	0.018	24	-	76	_	-	_	42
C	메틸에틸케톤	0.44	0.011	20	_	80	-	_	-	25
S	메틸아이소뷰틸케톤	0.17	0.004	55	6	39	-	-	-	18
류	뷰틸아세테이트	0.008	0.010	14	14	72	_	_	_	14
	i-뷰틸알코올	0.011	0.014	_	_	100	-	_	-	12
	프로피온산	0.0057	0.093	-	_	67	33	-	-	3
지 방	n−뷰틸산	0.00019	0.235	-	-	25	75	-	-	4
산	n-발레르산	0.000037	0.068	-	-	100	_	-	-	5
류	i-발레르산	0.000078	-	-	_	-	_	-	-	_

<그림 2-23> 생물반응조(호기조) 지정악취물질 기여도

다. 2차침전지

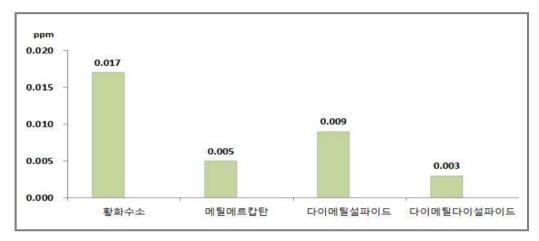

2차침전지는 생물반응조의 미생물이 혼합된 슬러지와 처리수를 고액분리하여 슬러지는 생물반응조로 반송시키고 처리수는 후속공정으로 유출시키는 공정으로, 주요 측정지점은 조 상부 및 주변이다.

(1) 복합악취

2차침전지에서 발생하는 복합악취 측정범위는 100배 이하 79%, 100~500배 19%순이며, 500배 이하가 98%로 대부분을 차지하고 있다.

<표 2-25> 2차침전지 복합악취 측정범위

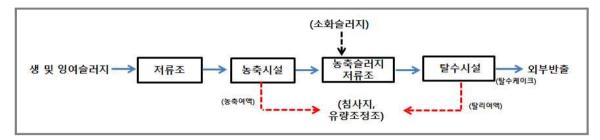
복합악취(총 시료수 : 96개)								
측정범위(배)	비율(%)	시료수(개)						
500 ~ 1,000	2	2						
100 ~ 500	19	18						
100 ଠାଟି	79	76						


<그림 2-24> 2차침전지 복합악취 측정범위

(2) 지정악취물질

2차침전지에서 발생하는 지정악취물질 중 대부분 황화합물류를 측정하였으며, 항목별 농도는 타 처리공정 대비 상대적으로 낮은 상태이다.

<표 2-26> 2차침전지 지정악취물질 농도 측정범위


구 분		최소감지농도	 평균	비율(%)						시료수
		(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
क्रिकां क्रिका विश्व	황화수소	0.00041	0.017	5	52	38	5	1	ı	21
	에틸메르캅탄	0.00007	0.005	8	58	34	-	-	_	12
	다이메틸설파이드	0.003	0.009	10	45	45	-	_	-	20
	다이메틸다이설파이드	0.0022	0.003	30	50	20	-	_	_	10

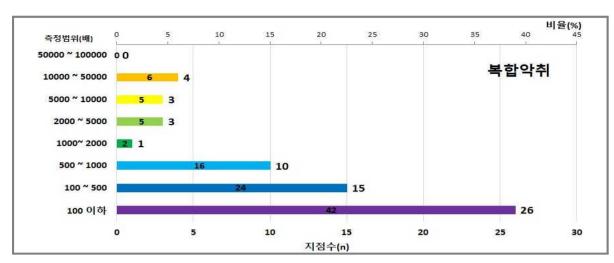
<그림 2-25> 2차침전지 황화합물류 평균 농도

2.3.3 슬러지처리공정

슬러지처리공정은 하수처리시설에서 발생하는 생슬러지(1차침전지), 잉여슬러지 (생물반응조, 2차침전지), 소화슬러지(소화조)의 함수율을 감소시키는 처리공정으로 주요시설은 농축시설, 슬러지저류조, 탈수시설로 구성되어 있다.

<그림 2-26> 슬러지처리공정 주요 처리계통도

가. 농축시설(농축기)

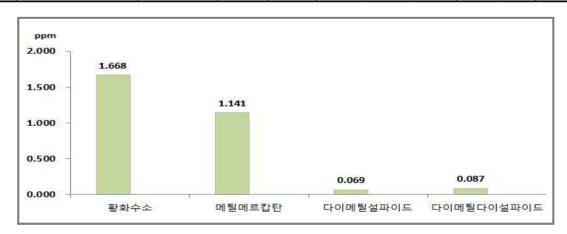

농축시설은 처리공정에서 발생된 슬러지의 농도를 증가시켜 탈수효율을 극대화하기 위한 시설로 기계식농축방식과 중력식농축방식으로 구분되며, 주요 측정지점은 기계식농축시설 주변이다.

(1) 복합악취

농축시설(농축기) 주변에서 발생하는 복합악취 측정범위는 100배 이하가 42%로 높은 비율을 차지하고, 100~500배 24%, 500~1,000배 16%순이며, 5,000배를 초과하는 경우는 11%정도인 것으로 나타났다.

<표 2-27> 농축시설(농축기) 복합악취 측정범위

복합악취(총 시료수 : 62개)								
측정범위(배)	비율(%)	시료수(개)						
5,000 초과	11	7						
2,000 ~ 5,000	5	3						
1,000 ~ 2,000	2	1						
500 ~ 1,000	16	10						
100 ~ 500	24	15						
100 이하	42	26						



<그림 2-27> 농축시설(농축기) 복합악취 측정범위

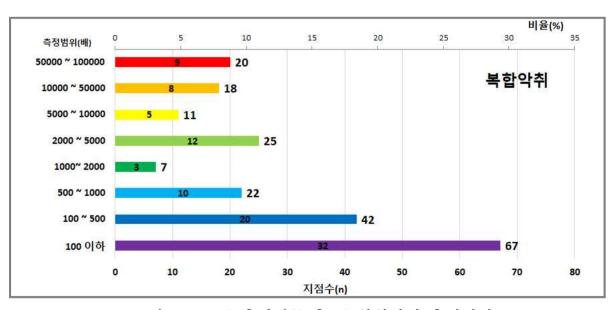
농축시설(농축기)에서 발생하는 지정악취물질 중 대부분 황화합물류를 측정하였으며, 농축시설 주변 항목별 농도는 타 슬러지처리공정 대비 상대적으로 낮은 상태이다.

<표 2-28> 농축시설(농축기) 지정악취물질 농도 측정범위

구 분		최소감지농도	평균	비율(%)						시료수
		(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
<u></u>	황화수소	0.00041	1.668	3	9	33	15	21	19	33
화	메틸메르캅탄	0.00007	1.141	_	13	47	27	7	6	15
합 물 류	다이메틸설파이드	0.003	0.069	-	38	44	18	_	-	16
11	다이메틸다이설파이드	0.0022	0.087	9	37	45	_	9	_	11

<그림 2-28> 농축시설(농축기) 황화합물류 평균 농도

나. 농축시설(농축조)

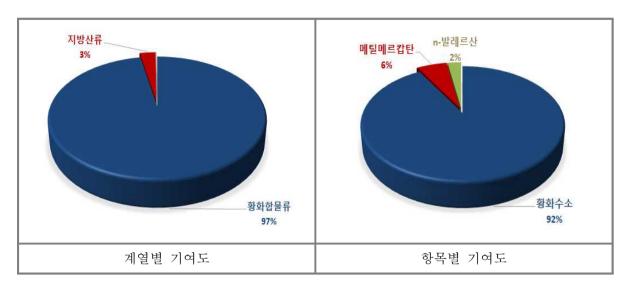

농축시설(농축조)은 1차침전지에서 발생된 생슬러지와 생물반응조의 잉여슬러지를 중력방식으로 농축하는 시설이며, 주요 측정지점은 조 내부이다.

(1) 복합악취

농축시설(농축조)에서 발생하는 복합악취 측정범위는 100배 이하 32%, 5,000 배 초과 23%, 100~500배 20%순이며, 5,000배를 초과하는 복합악취가 23%를 차지하고 있다.

<표 2-29> 농축시설(농축조) 복합악취 측정범위

	복합악취(총 시료수 : 212개)			
측정범위(배)	측정범위(배) 비율(%)			
5,000 초과	23	49		
2,000 ~ 5,000	12	25		
1,000 ~ 2,000	3	7		
500 ~ 1,000	10	22		
100 ~ 500	20	42		
100 이하	32	67		



<그림 2-29> 농축시설(농축조) 복합악취 측정범위

지정악취물질 계열별 기여도는 황화합물류가 97%로 대부분이고 지방산류가 일부 나타났으며, 항목별 기여도는 황화합물류 중 황화수소가 92%로 대부분 을 차지하는 것으로 나타났다.

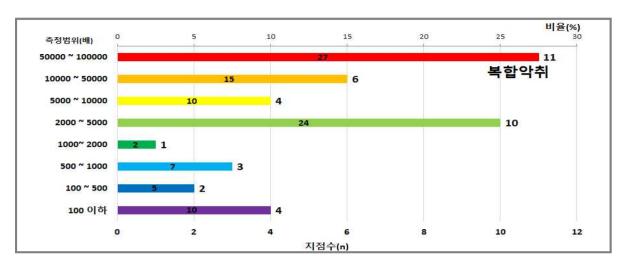
<표 2-30> 농축시설(농축조) 지정악취물질 농도 측정범위

		최소감지농도	평균	비율(%)						시료수
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.313	14	_	32	38	16	_	37
	트라이메틸아민	0.000032	0.001	60	40	_	_	_	_	5
畝	황화수소	0.00041	80.768	1	6	25	14	15	39	165
8 화 합	메틸메르캅탄	0.00007	0.868	1	15	39	20	16	9	96
물류	다이메틸설파이드	0.003	0.050	-	34	51	13	2	-	76
TT	다이메틸다이설파이드	0.0022	0.158	5	15	49	24	7	-	41
	아세트알데하이드	0.0015	0.047	-	8	80	12	-		51
알 데	프로피온알데하이드	0.001	0.010	_	34	66	_	_	_	29
하 이	뷰틸알데하이드	0.00067	0.017	_	13	87	_	_	_	45
드 류	n-발레르알데하이드	0.00041	0.007	15	31	54	_	_	_	13
	i-발레르알데하이드	0.0001	0.016	-	-	100	_	_	_	6
	스타이렌	0.035	0.011	49	11	38	2		_	53
	톨루엔	0.33	0.347	11	-	36	34	15	4	53
V	자일렌	0.16	0.019	47	2	49	2	_	-	53
O C	메틸에틸케톤	0.44	0.073	35	10	55	_	_	_	51
S 류	메틸아이소뷰틸케톤	0.17	0.003	64	7	29	_	_	_	45
	뷰틸아세테이트	0.008	0.007	48	10	42	_	_	_	33
	i-뷰틸알코올	0.011	0.016	31	-	66	3	_	_	35
	프로피온산	0.0057	0.321	_	-	-	67	33	_	3
지 방	n-뷰틸산	0.00019	0.097	-	-	75	25	_	-	4
산 류	n-발레르산	0.000037	0.206	_	-	20	80	_	_	5
	i-발레르산	0.000078	-	_	-	_	_	_	_	_

<그림 2-30> 농축시설(농축조) 지정악취물질 기여도

다. 슬러지저류조(생슬러지)

슬러지저류조(생슬러지)는 1차침전지에서 발생된 생슬러지를 일시 저류하는 시설이며, 주요 측정지점은 조 내부이다.


(1) 복합악취

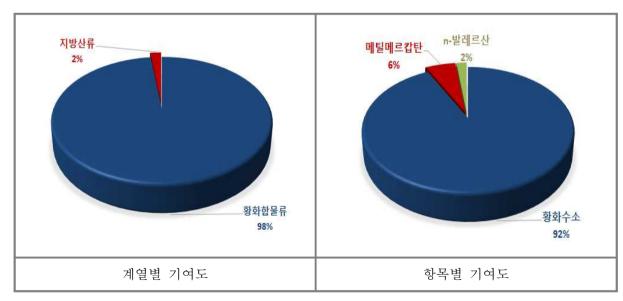
슬러지저류조(생슬러지)에서 발생하는 복합악취 측정범위는 5,000배를 초과 가 52%로 상대적으로 높게 나타났으며, 100배 이하 10%, 500~1,000배 7%, 100~500배 5%순으로 나타났다.

<표 2-31> 슬러지저류조(생슬러지) 복합악취 측정범위

	복합악취(총 시료수 : 41개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	52	21
2,000 ~ 5,000	24	10
1,000 ~ 2,000	2	1
500 ~ 1,000	7	3
100 ~ 500	5	2
100 이하	10	4

한국환경공단

<그림 2-31> 슬러지저류조(생슬러지) 복합악취 측정범위


지정악취물질 계열별 기여도는 황화합물류가 98%로 대부분이고 지방산류가 일부 나타났으며, 항목별 기여도는 황화합물류 중 황화수소가 92%로 대부분을 차지하는 것으로 나타났다.

<표 2-32> 슬러지저류조(생슬러지) 지정악취물질 농도 측정범위

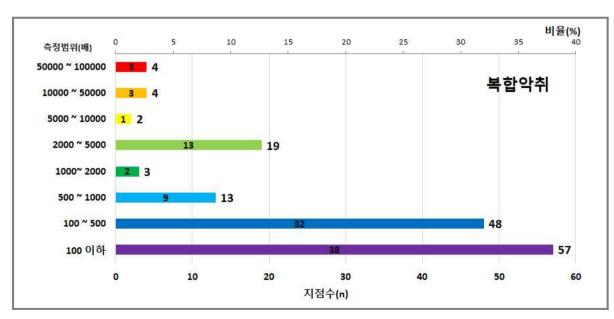
		최소감지농도	평균	비율(%)						시료수
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.278	25	-		62	13	_	8
	트라이메틸아민	0.000032	0.001	50	50	_	_	_	_	2
	황화수소	0.00041	285.71	_	_	11	3	6	80	35
祕 화 회	메틸메르캅탄	0.00007	2.935	_	11	11	21	21	64	19
물류	다이메틸설파이드	0.003	0.049	_	17	67	17	_	101	6
	다이메틸다이설파이드	0.0022	0.024	_	50	50	_	_	-	4
	아세트알데하이드	0.0015	0.035	_	_	90	10	_	-	10
알 데	프로피온알데하이드	0.001	0.004	_	86	14	-	-	-	7
하 이 드 류	뷰틸알데하이드	0.00067	0.010	_	11	89	_	-	-	9
	n-발레르알데하이드	0.00041	0.000	100	_	_	_	_	-	1
	i-발레르알데하이드	0.0001	0.015	_	_	100	_	_	_	1

<표 2-32> 계 속

¬ H		최소감지농도	평균	비율(%)						시료수
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
	스타이렌	0.035	0.011	20	30	50	-	-	_	10
	톨루엔	0.33	0.544	-	_	20	60	10	10	10
V	자일렌	0.16	0.041	40	_	50	10	-	_	10
O C S	메틸에틸케톤	0.44	0.011	20	20	60	_	-	_	10
류	메틸아이소뷰틸케톤	0.17	0.003	50	12	38	-	-	_	8
	뷰틸아세테이트	0.008	0.011	38	24	38	_	-	-	8
	i-뷰틸알코올	0.011	0.016	29	-	71	-	-	_	7
	프로피온산	0.0057	0.150	-	-	-	100	-	_	1
지 방	n−뷰틸산	0.00019	0.048	-	_	100	_	_	-	2
산 류	n-발레르산	0.000037	0.525	_			_	100	_	1
	i-발레르산	0.000078	_	_	_	_	_	_	_	_

<그림 2-32> 슬러지저류조(생슬러지) 지정악취물질 기여도

마. 슬러지저류조(잉여슬러지)

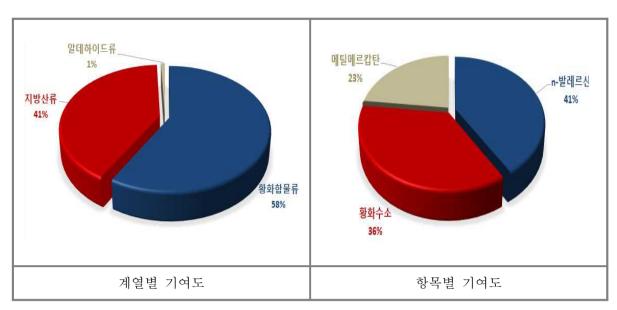

슬러지저류조(잉여슬러지)는 생물반응조 및 2차침전지에서 발생된 잉여슬러지를 일시 저류하는 시설이며, 주요 측정지점은 조 내부이다.

(1) 복합악취

슬러지저류조(잉여슬러지)에서 발생하는 복합악취 측정범위는 100배 이하 38%, 100~500배 32%, 2,000~5,000배 13%순으로 나타났으며, 5,000배 초과가 6%로 슬러지저류조(생슬러지) 대비 상대적으로 낮게 나타났다.

<표 2-33> 슬러지저류조(잉여슬러지) 복합악취 측정범위

	복합악취(총 시료수 : 150개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	6	10
2,000 ~ 5,000	13	19
1,000 ~ 2,000	2	3
500 ~ 1,000	9	13
100 ~ 500	32	48
100 ଠାତି	38	57


<그림 2-33> 슬러지저류조(잉여슬러지) 복합악취 측정범위

지정악취물질 계열별 기여도는 황화합물류 58%, 지방산류 41%로 대부분이고, 항목별 기여도는 황화합물류 중 황화수소 36%, 메틸메르캅탄 23%순이며, 지방산류 중 n-발레르산이 41%를 차지하는 것으로 나타났다.

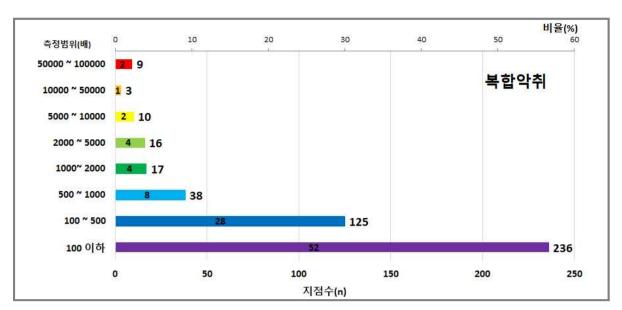
<표 2-34> 슬러지저류조(잉여슬러지) 지정악취물질 농도 측정범위

¬ =		최소감지농도	평균	비율(%)						시료수
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
	암모니아	1.5	0.106	17	_	50	33	-	_	12
	트라이메틸아민	0.000032	-	_	-	-	_	-	_	_
<u></u> 황	황화수소	0.00041	12.857	2	10	38	15	14	21	110
화 합	메틸메르캅탄	0.00007	0.594	1	19	47	18	8	7	85
물	다이메틸설파이드	0.003	0.181	2	15	57	20	4	2	92
류	다이메틸다이설파이드	0.0022	0.099	4	39	39	10	8	-	49
	아세트알데하이드	0.0015	0.019	_	21	79	-	-	-	19
알 데	프로피온알데하이드	0.001	0.006	17	33	50	-	-	-	6
하 이	뷰틸알데하이드	0.00067	0.015	7	13	80	-	-	_	15
드류	n-발레르알데하이드	0.00041	0.004	33	33	34	-	-	_	3
77	i-발레르알데하이드	0.0001	0.008	_	_	100	-	-	-	1
	스타이렌	0.035	0.004	47	18	35	-	-	-	17
	톨루엔	0.33	0.193	18	6	35	29	12	_	17
V	자일렌	0.16	0.014	59	_	41	_	_	-	17
O C	메틸에틸케톤	0.44	0.008	47	_	53	_	_	-	15
S 류	메틸아이소뷰틸케톤	0.17	0.002	76	12	12	_	_	-	17
	뷰틸아세테이트	0.008	0.005	38	23	38	_	_	-	13
	i-뷰틸알코올	0.011	0.013	18	18	64	_	_	_	11
	프로피온산	0.0057	_	_	_	_	_	_	-	_
지 방	n−뷰틸산	0.00019	0.075	-	_	100	_	_	_	1
산 류	n-발레르산	0.000037	0.205	-	_	_	100	_	-	6
	i-발레르산	0.000078	-	_	_	-	-	-	-	_

🔵 한국환경광단

<그림 2-34> 슬러지저류조(잉여슬러지) 지정악취물질 기여도

바. 탈수시설(탈수기실)


탈수시설(탈수기실)은 하수처리공정에서 발생한 슬러지의 함수율을 감소시켜 최종처분하기 위한 시설이며, 주요 측정지점은 탈수기 주변 및 실내공간이다.

(1) 복합악취

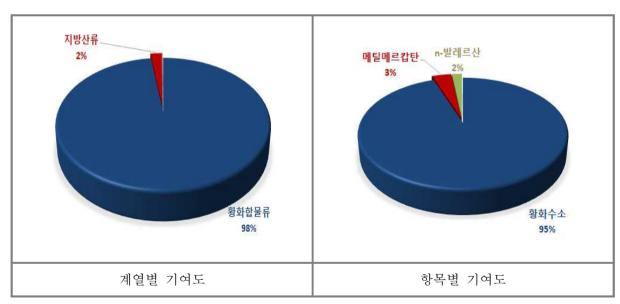
탈수시설(탈수기실)에서 발생하는 복합악취 측정범위는 100배 이하 52%, 100 ~500배 28%, 500~1,000배 8%순으로 나타났으며, 500배 이하가 80%로 대부분을 차지하는 것으로 나타났다.

<표 2-35> 탈수시설(탈수기실) 복합악취 측정범위

	복합악취(총 시료수 : 454개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	4	22
2,000 ~ 5,000	4	16
1,000 ~ 2,000	4	17
500 ~ 1,000	8	38
100 ~ 500	28	125
100 이하	52	236

<그림 2-35> 슬러지저류조(탈수기실) 복합악취 측정범위

지정악취물질 계열별 기여도는 황화합물류 98%로 대부분이고, 항목별 기여도는 황화합물류 중 황화수소 95%를 차지하는 것으로 나타났다.


<표 2-36> 탈수시설(탈수기실) 지정악취물질 농도 측정범위

		최소감지농도	평균	비율(%)						시료수
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
	암모니아	1.5	0.398	14	-	43	29	14	-	7
	트라이메틸아민	0.000032	0.002	25	75	-	-	_	-	4
 	황화수소	0.00041	45.604	_	14	41	18	11	16	223
원 화 합	메틸메르캅탄	0.00007	0.294	2	17	58	16	4	3	167
5 물 류	다이메틸설파이드	0.003	0.021	4	39	54	3	_	ı	134
π 	다이메틸다이설파이드	0.0022	0.033	17	32	49	1	1	ĺ	108
	아세트알데하이드	0.0015	0.021	_	33	67	_	_	ı	9
알 데	프로피온알데하이드	0.001	0.010	_	20	80	_	_	ı	5
하 이	뷰틸알데하이드	0.00067	0.010	_	38	62	_	_	ı	8
드류	n-발레르알데하이드	0.00041	-	_	-	_	_	_	_	_
	i-발레르알데하이드	0.0001	_	_	_	_	_	_	-	_

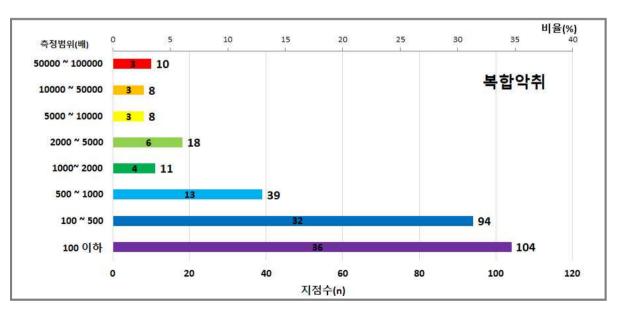
한국환경공단

<표 2-36> 계 속

		최소감지농도	평균	비율(%)						시료수
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	스타이렌	0.035	0.008	30	20	50	_	-		10
	톨루엔	0.33	0.281	10	_	40	30	20	-	10
V O	자일렌	0.16	0.031	10	-	80	10	-	-	10
С	메틸에틸케톤	0.44	0.012	10	-	90	_	_	-	10
S 류	메틸아이소뷰틸케톤	0.17	0.006	40	_	60	_	_	-	10
	뷰틸아세테이트	0.008	0.009	25	_	75	_	_	1	8
	i-뷰틸알코올	0.011	0.016	14	_	86	_	-	-	7
	프로피온산	0.0057	0.096	_	_	100	_	_	-	1
지 방 산 류	n-뷰틸산	0.00019	0.047	_	_	100	_	_	_	1
	n-발레르산	0.000037	0.081	_	_	67	33	_	_	3
	i-발레르산	0.000078	-	_	_	_	_	_		_

<그림 2-36> 탈수시설(탈수기실) 지정악취물질 기여도

사. 탈수시설(케이크호퍼실)

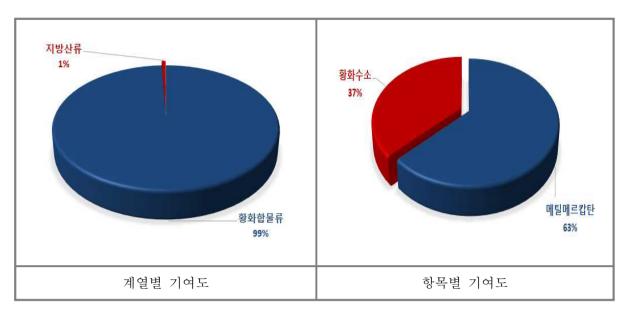

탈수시설(케이크호퍼실)은 탈수케이크를 외부반출 전 적재함(호퍼)에 일시 보관하는 시설이며, 주요 측정지점은 탈수케이크 적재함 주변 및 실내공간이다.

(1) 복합악취

탈수시설(케이크호퍼실)에서 발생하는 복합악취 측정범위는 100배 이하 36%, $100\sim500$ 배 32%, $500\sim1,000$ 배 13%순으로 나타났으며, 5,000배 초과가 9%를 차지하는 것으로 나타났다.

<표 2-37> 탈수시설(케이크호퍼실) 복합악취 측정범위

	 복합악취(총 시료수 : 292개)				
 측정범위(배)	측정범위(배) 비율(%)				
5,000 초과	9	26			
2,000 ~ 5,000	6	18			
1,000 ~ 2,000	4	11			
500 ~ 1,000	13	39			
100 ~ 500	32	94			
100 이하	36	104			



<그림 2-37> 탈수시설(케이크호퍼실) 복합악취 측정범위

지정악취물질 계열별 기여도는 황화합물류 99%로 대부분이고, 항목별 기여도는 황화합물류 중 메틸메르캅탄 63%, 황화수소 37%순으로 나타났다.

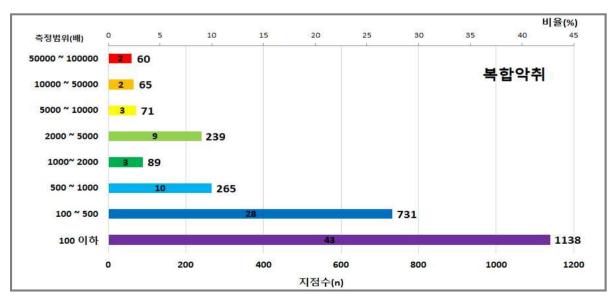
<표 2-38> 탈수시설(케이크호퍼실) 지정악취물질 농도 측정범위

구 분		최소감지농도	평균			비율(%)			
		(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	· 0.501~ 2.0 2.000 초과		시료수 (개)
	암모니아	1.5	5.385	_	_	13	13	38	36	8
	트라이메틸아민	0.000032	0.001	100	_	-	-	_	-	3
	황화수소	0.00041	53.8	2	15	33	18	18	14	153
황 화	메틸메르캅탄	0.00007	15.6	_	10	56	17	8	9	154
합鬼	다이메틸설파이드	0.003	3.363	2	17	59	15	2	5	145
류	다이메틸다이설파이드	0.0022	2.310	3	16	62	10	3	6	121
	아세트알데하이드	0.0015	0.021	_	9	91		-	_	11
알 데	프로피온알데하이드	0.001	0.002	25	75	_	_	-	_	4
하 이 드 류	뷰틸알데하이드	0.00067	0.016	_	-	100		-	_	7
	n-발레르알데하이드	0.00041	-	_	-	-	_	_	_	_
	i-발레르알데하이드	0.0001	-	_	-	_	_	_	_	_
	스타이렌	0.035	0.007	60	-	40	_	-	_	10
	톨루엔	0.33	0.725	20	_	30	30	10	10	10
V O	자일렌	0.16	0.020	40	-	60	_	-	-	10
С	메틸에틸케톤	0.44	0.010	40	_	60	_	-	-	10
S 류	메틸아이소뷰틸케톤	0.17	0.006	43	14	43	-	-	-	7
	뷰틸아세테이트	0.008	0.015	17	17	66	-	-	_	6
	i-뷰틸알코올	0.011	0.009	33	-	67			_	6
	프로피온산	0.0057	-	_	-	_	_	-	-	-
지 방	n−뷰틸산	0.00019	0.271	-	-	-	100	-	-	1
산 류	n−발레르산	0.000037	_	_	-	_	_	_	-	_
	i-발레르산	0.000078	0.071	_	-	100	_	_	_	1

<그림 2-38> 탈수시설(케이크호퍼실) 지정악취물질 기여도

2.3.4 악취방지시설

하수처리시설의 처리공정에서 발생하는 악취를 포집·처리하는 시설로, 주요 악취방지시설은 미생물에 의한 방식(바이오 필터), 수세정방식, 약액세정방식 등이 설치되어 운영 중에 있다.

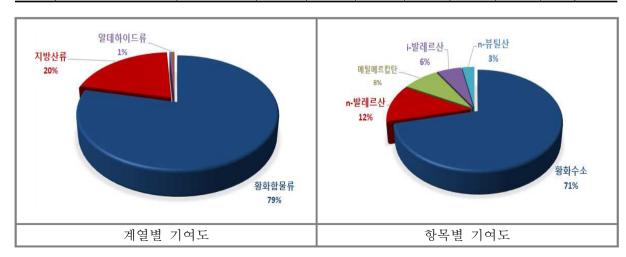

가. 유입구

(1) 복합악취

유입구에서 발생하는 복합악취 측정범위는 100배 이하 43%, 100~500배 28%로 500배 이하가 높은 비율을 차지하고 500~1,000배 10%, 2,000~5,000배 9%순이며, 5,000배를 초과하는 경우는 7%로 나타났다.

<표 2-39> 유입구 복합악취 측정범위

	복합악취(총 시료수 : 2,658개)								
측정범위(배)	비율(%)	시료수(개)							
5,000 초과	7	196							
2,000 ~ 5,000	9	239							
1,000 ~ 2,000	3	89							
500 ~ 1,000	10	265							
100 ~ 500	28	731							
100 이하	43	1,138							



<그림 2-39> 유입구 복합악취 측정범위

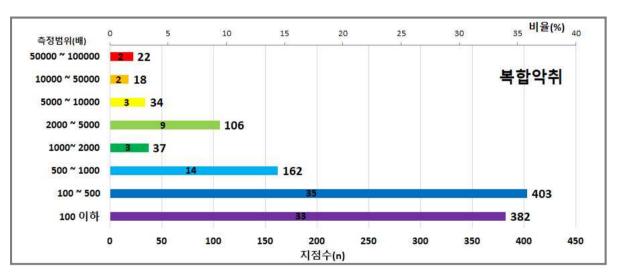
유입구에서 발생하는 지정악취물질 계열별 기여도는 황화합물류가 79%, 지방산류가 20%를 차지하며, 항목별 기여도는 황화수소 71%, n-발레르산 12%, i-발레르산 6%순으로 나타났다.

<표 2-40> 유입구 지정악취물질 농도 및 측정범위

구 분		최소감지농도	평균	비율(%)						시료수
		(ppm)	(ppm) (ppm) 0.0000~ 0.0010~ 0.005~ 0.101~ 0.		0.501~ 2.000	2.0 초과	(기)			
	암모니아	1.5	5.255	21	1	32	28	13	5	793
	트라이메틸아민	0.000032	0.004	46	43	10	1	_	_	181
황	황화수소	0.00041	12.5	1	6	28	22	18	25	1,681
화	메틸메르캅탄	0.00007	0.251	1	12	53	23	9	2	1,273
합 물	다이메틸설파이드	0.003	0.059	4	28	58	8	2	-	955
류	다이메틸다이설파이드	0.0022	0.100	10	36	42	9	3	-	667
알	아세트알데하이드	0.0015	0.038	1	7	85	7	_	_	1,095
데	프로피온알데하이드	0.001	0.012	3	30	67	_	_	_	630
하	뷰틸알데하이드	0.00067	0.021	2	15	82	1	-	-	960
01	n-발레르알데하이드	0.00041	0.009	9	32	59	_	_	_	236
드 류	i-발레르알데하이드	0.0001	0.017	6	20	72	2	_	-	101
	스타이렌	0.035	0.012	49	4	46	1	-	-	1,029
V	톨루엔	0.33	0.181	9	1	60	22	8	-	1,127
0	자일렌	0.16	0.021	41	4	52	3		-	1,118
С	메틸에틸케톤	0.44	0.014	33	4	62	1	-	-	1,006
S	메틸아이소뷰틸케톤	0.17	0.004	64	3	33	_	-	-	989
류	뷰틸아세테이트	0.008	0.010	41	4	55	_	-	-	750
	i-뷰틸알코올	0.011	0.016	43	3	53	1		-	575
지	프로피온산	0.0057	0.244	2	_	33	57	8	-	113
방	n−뷰틸산	0.00019	0.233	1	2	44	42	9	2	172
산	n−발레르산	0.000037	0.191	_	_	56	38	4	2	68
류	i-발레르산	0.000078	0.190	_	_	56	31	13		16

<그림 2-40> 유입구 지정악취물질 기여도

한국환경공단

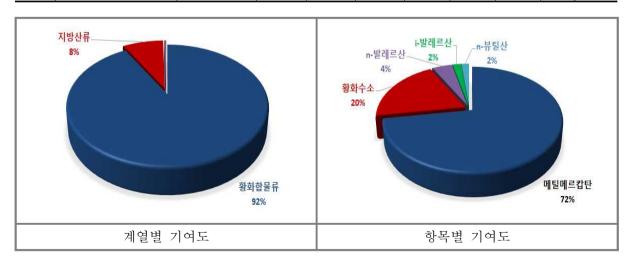

나. 배출구

(1) 복합악취

배출구에서 발생하는 복합악취 측정범위는 100배 이하 33%, 100~500배 35%로 500배 이하가 높은 비율을 차지하고 500~1,000배 14%, 2,000~5,000배 9%순이며, 5,000배를 초과하는 경우는 6%로 나타났다.

<표 2-41> 배출구 복합악취 측정범위

	복합악취(총 시료수 : 1,164개)								
측정범위(배)	비율(%)	시료수(개)							
5,000 초과	6	74							
2,000 ~ 5,000	9	106							
1,000 ~ 2,000	3	37							
500 ~ 1,000	14	162							
100 ~ 500	35	403							
100 이하	33	382							


<그림 2-41> 배출구 복합악취 측정범위

(2) 지정악취물질

배출구에서 발생하는 지정악취물질 계열별 기여도는 황화합물류가 92%, 지방산류가 8%를 차지하며, 항목별 기여도는 메틸메르캅탄 72%, 황화수소 20%, n-발레르산 4%순으로 나타났다.

10	9 495	யி ネコ	지정악취물질	누ㅜ	ㅁ	ᅔᅯᆔᇬ
< #	7-47.>	매울구	시성약취품실	눗노	'늦'	숙성범위

구 분		최소감지농도	평균		비율(%)					시료수
		(ppm)	(ppm)	0.0000~ 0.0010			0.501~ 2.000	2.0 초과	(기)	
암모니아		1.5	0.454	28	1	38	24	7	2	563
	트라이메틸아민	0.000032	0.003	42	54	4	_	_	ı	91
황	황화수소	0.00041	6.372	1	10	35	20	15	19	944
화 합	메틸메르캅탄	0.00007	3.983	1	10	60	23	6	-	818
물	다이메틸설파이드	0.003	0.050	3	23	66	7	1	-	694
류	다이메틸다이설파이드	0.0022	0.053	10	32	49	7	2	_	529
알	아세트알데하이드	0.0015	0.039	2	8	84	6	-	-	901
데	프로피온알데하이드	0.001	0.015	3	32	64	_	1	-	490
하 이	뷰틸알데하이드	0.00067	0.019	4	15	81	_	-	1	792
	n-발레르알데하이드	0.00041	0.010	4	33	63	_	_	-	134
류	i-발레르알데하이드	0.0001	0.012	-	27	73	_	-	-	71
	스타이렌	0.035	0.011	48	4	47	1	-	-	856
V	톨루엔	0.33	0.133	13	1	60	20	6	-	968
0	자일렌	0.16	0.023	43	2	51	3	1	-	955
С	메틸에틸케톤	0.44	0.015	36	3	60	1	_	_	811
S 류	메틸아이소뷰틸케톤	0.17	0.005	63	3	34	-	-	-	840
Ħ	뷰틸아세테이트	0.008	0.010	38	4	58	-	-	_	604
	i-뷰틸알코올	0.011	0.012	37	2	60	1	-	-	444
TI	프로피온산	0.0057	0.395	-	-	43	44	9	4	80
지 방	n-뷰틸산	0.00019	0.246	-	1	53	35	11	-	128
산 류	n-발레르산	0.000037	0.124	-	-	57	41	2	-	41
 _	i−발레르산	0.000078	0.114	_	-	54	46	_		13

<그림 2-42> 배출구 지정악취물질 기여도

🔘 한국환경광단

2.4 문제점 및 개선방안

가. 침사 및 협잡물 저장박스 개선

협잡물처리기에서 발생되는 침사 및 협잡물을 저장박스 상부가 개방된 상태여서 악취물질이 전처리동 내부로 확산되고, 시설의 조기 부식이 우려되는 실정으로 저장박스를 밀폐형으로 개선하여야 한다.

<그림 2-43> 침사 및 협잡물 저장박스 개선

나. 유량조정조 점검구 밀폐형 구조로 변경

유량조정조 상부에 설치된 점검구가 운영상 점검 등의 이유로 상시 개방되어 있어 발생된 악취물질이 전처리실 내부로 확산되는 것을 방지하기 위해 점검 구를 밀폐구조로 개선이 필요하다.

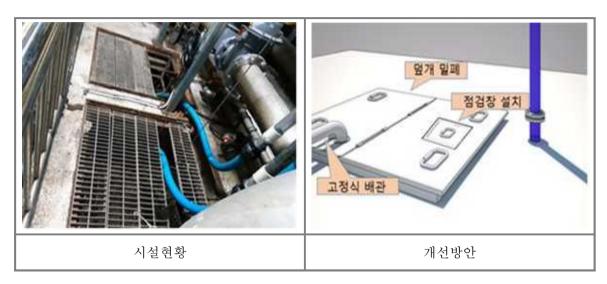
<그림 2-44> 유량조정조 점검구 개선

다. 탈수케이크 저장실(암롤박스) 개선

탈수케이크 암롤박스가 외부에 개방되어 탈수케이크에서 발생된 악취물질이 처리시설 주변으로 확산되는 상태로 탈수케이크 저장실 및 악취포집시설을 설치 하여 악취확산을 차단하도록 한다.

<그림 2-45> 탈수케이크 저장실 신설 및 포집설비 설치

라. 탈수기 주변 공간포집(구획화) 방식으로 변경


탈수기 상부 덮개의 파손, 또는 운영 편의상 개방하여 운영됨에 따라 탈수기 동으로의 악취확산이 이루어지는 것을 방지하기 위해 공간포집(구획화) 방식 으로 개선하여 탈수기 점검이 용이하도록 한다.

<그림 2-46> 탈수기 구획화 및 포집설비 설치

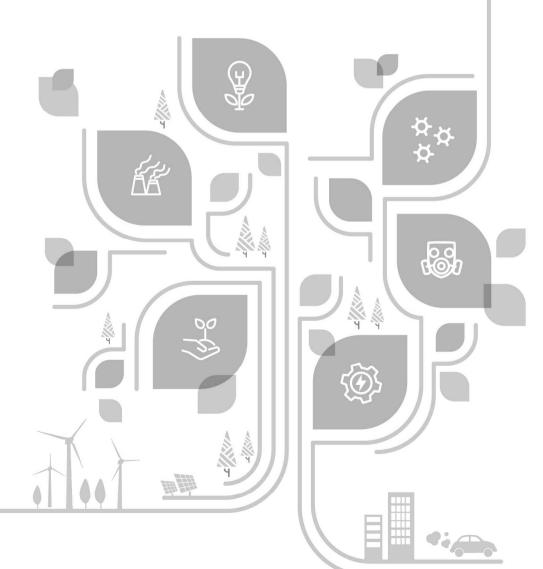
마. 잉여슬러지저류조 상부 덮게 및 포집설비 설치

잉여슬러지저류조 상부가 그레이팅으로 개방되어 발생된 고농도 부식성 악취 물질이 지하실 내부로 확산되고 근무자 작업 안전에 영향을 미치고 있는 상태로 밀폐용 덮개 및 악취포집설비를 설치한다.

<그림 2-47> 잉여슬러지저류조 상부 덮게 및 포집설비 설치

바. 악취방지시설 배출구 설치지점 변경

악취방지시설 배출구가 건축물 측면에 위치하여 주변 보행자에게 악취로 인한 불쾌감을 유발할 수 있는 실정으로, 배출구를 건축물 상부로 연장하여 설치 하도록 한다.



<그림 2-48> 악취방지시설 배출구 설치지점 변경

제3장

공공폐수처리시설

- 3.1 현황
- 3.2 전체 악취물질 측정·분석
- 3.3 발생원별 악취물질 측정·분석
- 3.4 문제점 및 개선방안

제3장 공공폐수처리시설

3.1 현황

3.1.1 개요

공공폐수처리시설에 대한 사례집 자료는 2014년~2018년도에 악취기술진단을 실시했던 98개 처리시설의 악취물질 측정·분석 결과를 기초로 작성하였다.

<표 3-1> 처리공정별 악취물질 시료채취 현황

처리 시설수	공정별 시료합계			전처리공정				생물학	적처리공
(개소)	(개)	소계	전처리시설	협잡물반출실	유량조정조	1차침	전지	혐기2	조 호기2
98	1,608	440	440 136 48 212 44					77	79
	슬러지처리공정								지시설

	2UNNU00						
	세ᅠᄼᄭᄁᇽᄙᅐ		탈수시설		0017	= -	
소계	슬러지저류조	농축시설	탈수기실	케이크호퍼실	유입구	배출구 130	
424	174	60	140	50	458	130	

3.1.2 폐수처리공법 현황

폐수처리는 산업단지 및 처리구역 내 사업장 등에서 발생되는 폐수 특성에 따라 다양한 공법으로 처리되고 있으며, 처리방식은 하수처리방법과 유사한 공법이 많으나 전처리공정은 폐수 특성에 따라 차이를 보인다.

3.1.3 주요 처리공정별 악취측정 지점 현황

악취측정 지점의 명칭은 처리시설 및 처리공법에 따라 상이하므로 공정별로 유사한 처리기능을 수행하는 지점으로 통합 분류하였으며, 주요 처리공정별 악취측정 지점은 다음과 같다.

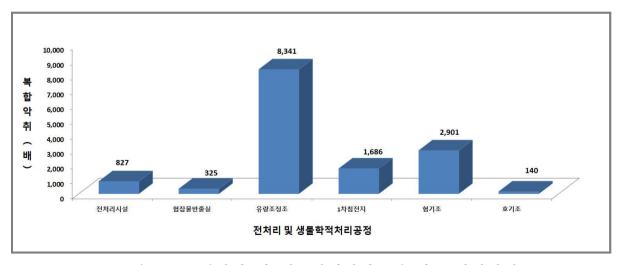
<표 3-2> 처리공정별 주요 악취측정 지점

-	구 분	TO 중지기자					
처리공정	발생원	수요 측정지점					
	전처리시설	유입수로, 스크린시설, 침사시설, 침사 및 협잡물 이송컨베이어, 전처리실 실내공간					
전처리공정	유량조정조	유입펌프장, 유량조정조 내부 및 실내공간					
	협잡물반출실	임사 및 협잡물반출실 실내공간 및 저장호퍼					
	1차침전지	1차침전지 내부 및 주변, 수로부(유입, 유출)					
생물학적 처리공정	생물반응조	혐기조 내부, 호기조 내부					
	슬러지저류조	슬러지저류조 내부					
슬러지 처리공정	농축시설	농축기 주변, 슬러지농축조 내부					
	탈수시설	탈수기 주변, 탈수케이크 저장시설, 탈수기실 실내공간					
악취	방지시설	유입구, 배출구					

3.2 전체 악취물질 측정·분석

처리시설 분류는 전처리공정(전처리시설, 협잡물반출실, 유량조정조, 1차침전지), 생물학적처리공정 [생물반응조(혐기조, 호기조)], 슬러지처리공정(슬러지저류조, 농축시설, 탈수시설), 악취방지시설(유입구, 배출구)로 구분하였다.

악취물질 측정·분석 결과의 통계값은 복합악취의 희석배수 및 지정악취물질의 농도를 산술평균을 사용하여 악취농도로 제시하였으며, 통계값 적용에 있어 불 검출된 측정값은 통계분석에서 제외하였다.


3.2.1 복합악취

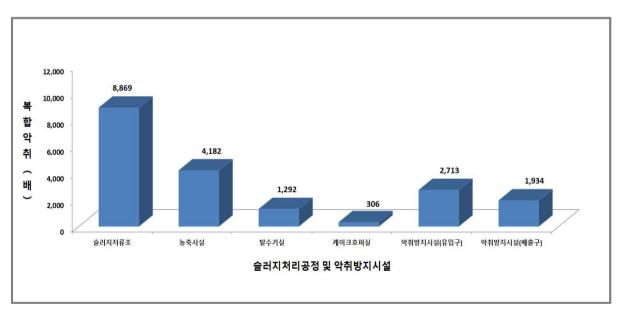
가. 전처리 및 생물학적처리공정

전처리공정의 복합악취(평균치)는 유량조정조가 8,341배로 상대적으로 높고 1차침전지 1,686배, 전처리시설 827배 순으로 나타났으며, 미생물을 이용한 생물학적처리공정에서는 혐기조가 2,901배로 호기조 140배 대비 높게 나타났다.

<표 3-3> 전처리 및 생물학적처리공정 평균 복합악	<丑	3-3>	정처리	및	생물학적처리공정	평균	복합악취
-------------------------------	----	------	-----	---	----------	----	------

		생물학적처리공정					
구 분 	전처리시설 (스크린 등)	협잡물반출실	유량조정조	1차침전지	혐기조	호기조	
평균 복합악취(배)	827	325	8,341	1,686	2,901	140	
전체 시료수(개)	136	48	212	44	77	79	

<그림 3-1> 전처리 및 생물학적처리공정 평균 복합악취


나. 슬러지처리공정 및 악취방지시설

슬러지처리공정에서의 복합악취는 슬러지저류조에서 8,869배로 상대적으로 높게 발생하고 있으며, 농축시설 4,182배, 탈수시설(탈수기실) 1,292배, 탈수시설 (케이크호퍼실) 306배순으로 나타났다.

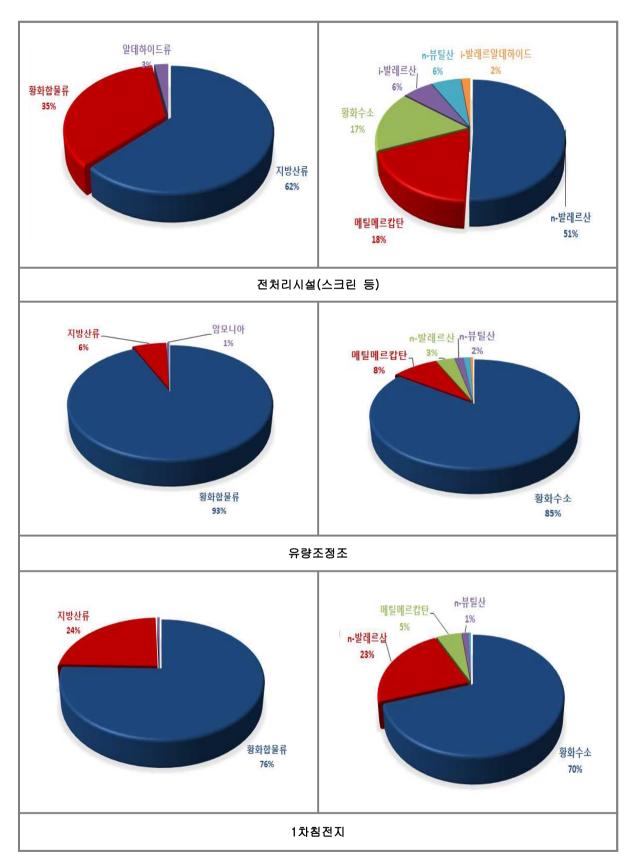
악취방지시설에서는 유입구 2,713배, 배출구 1,934배로 차이가 크지 않은 것으로 나타났다.

<표 3-4> 슬러지처리공정 및 악취방지시설 평균 복합악취

구 분		슬러지	처리공정	정 악취방지시설						
	슬러지	노동기서	탈수	시설	0017	배출구				
	저류조	농축시설	탈수기실	케이크호퍼실	유입구					
평균 복합악취(배)	8,869	4,182	1,292	306	2,713	1,934				
전체 시료수(개)	174	60	140	50	458	130				

<그림 3-2> 슬러지처리공정 및 악취방지시설 평균 복합악취

3.2.2 지정악취물질


가. 전처리공정

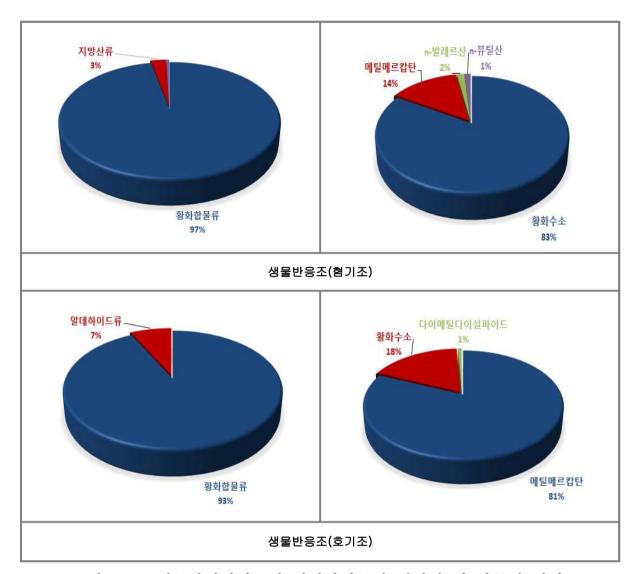
전처리공정(전처리시설, 협잡물반출실, 유량조정조, 1차침전지)의 계열별 기여도는 황화합물류 및 지방산류가 높은 상태이며, 황화합물류 중 황화수소, 지방산류 중 n-발레르산의 기여도가 높은 것으로 나타났다.

<표 3-5> 전처리공정 지정악취물질 평균 농도

	구 분			전처리공정(ppm)										
	지정악취물질(pp	m)	전처리	시설(스	크린 등)	등) 협잡물반출실			유량조정조			1차침전지		
	최소 항목 감지농도		평균	최대	시료수 (개)	평균	최대	시료수 (개)	평균	최대	시료수 (개)	평균	최대	시료수 (개)
	암모니아	1.5	0.177	0.900	13	-	-	-	0.925	34.9	43	0.221	0.700	6
	트라이메틸아민	0.000032	0.001	0.001	2	-	Ī		0.012	0.189	20	0.001	0.001	5
황	황화수소	0.00041	0.760	10.7	69	0.058	0.433	12	24.7	995.5	171	5.277	32.4	24
화 합	메틸메르캅탄	0.00007	0.144	2.520	41	0.045	0.117	5	0.415	10.8	126	0.069	0.288	10
물	다이메틸설파이드	0.003	0.061	0.622	40	0.003	0.006	7	0.112	1.815	106	0.290	2.158	11
류	다이메틸다이설파이드	0.0022	0.064	0.806	20	0.012	0.035	5	0.111	1.193	61	0.076	0.332	7
	아세트알데하이드	0.0015	0.051	0.320	16	-	-	-	0.062	0.986	101	0.048	0.112	7
알 데	프로피온알데하이드	0.001	0.012	0.057	14	-	-	-	0.013	0.140	72	0.013	0.030	6
하 이	뷰틸알데하이드	0.00067	0.015	0.041	16	-	-	-	0.024	0.278	94	0.021	0.060	8
드 류	n-발레르알데하이드	0.00041	0.006	0.008	2	-	-	-	0.008	0.025	18	0.003	0.003	2
71	i-발레르알데하이드	0.0001	0.022	0.022	1	-	-	-	0.010	0.030	9	-	-	-
	스타이렌	0.035	0.062	0.610	17	_	-	-	0.021	1.120	83	0.009	0.050	7
	톨루엔	0.33	0.195	1.210	19	-	-	-	0.086	1.000	101	0.045	0.230	9
V	자일렌	0.16	0.421	6.780	19	-	-	-	0.030	0.960	100	0.009	0.020	9
O C	메틸에틸케톤	0.44	0.011	0.070	17	-	-	-	0.009	0.050	84	0.009	0.020	7
S 류	메틸아이소뷰틸케톤	0.17	0.004	0.020	18	-	-	-	0.003	0.019	95	0.002	0.010	8
	뷰틸아세테이트	0.008	0.009	0.050	15	-	-	-	0.011	0.180	72	0.001	0.008	6
	i-뷰틸알코올	0.011	0.012	0.050	13	-	-	-	0.013	0.160	55	0.004	0.010	5
	프로피온산	0.0057	0.137	0.140	2	-	-	-	0.308	1.438	13	0.079	0.079	1
지 방	n-뷰틸산	0.00019	0.132	0.148	2	-	-	-	0.213	1.319	17	0.049	0.049	1
· 산 류	n-발레르산	0.000037	0.209	0.209	1	-	-	-	0.092	0.396	8	0.155	0.155	1
	i-발레르산	0.000078	0.055	0.060	2	-		-	0.070	0.137	5	-		-

주) 협잡물반출실은 실내공간으로 주요 측정항목이 황화합물류임.

<그림 3-3> 전처리공정 지정악취물질 계열별 및 항목별 기여도


🔘 한국환경공단

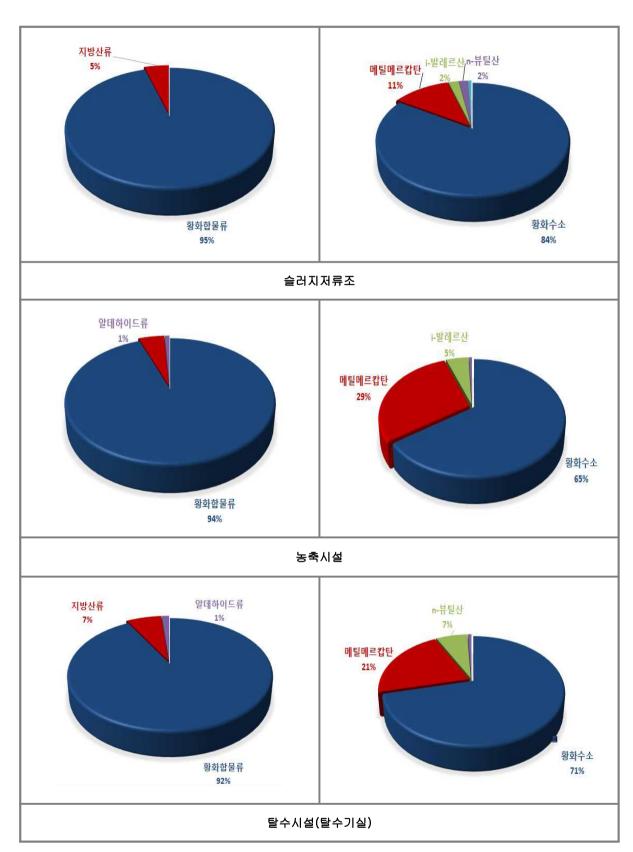
나. 생물학적처리공정

생물학적처리공정 [생물반응조(혐기조), 생물반응조(호기조)] 의 계열별 기여도는 황화합물류가 대부분을 차지하며, 혐기조는 황화수소, 호기조는 메틸메르캅탄의 기여도가 높은 것으로 나타났다.

<표 3-6> 생물학적처리공정 지정악취물질 농도

	구 분		생물학적처리공정(ppm)								
	지정악취물질(pr	om)	생물	라는용조(혐기	I조)	생물	를반응조(호기	I조)			
	항목 ^{최소} 감지농도			최대	시료수 (개)	평균	최대	시료수 (개)			
	암모니아	1.5	0.200	0.300	6	0.400	0.800	2			
	트라이메틸아민	0.000032	_	_	_	_	_	_			
황	황화수소	0.00041	15.7	415.1	36	0.159	1.553	21			
항 합	메틸메르캅탄	0.00007	0.446	5.426	22	0.099	0.568	10			
물	다이메틸설파이드	0.003	0.110	0.927	40	0.034	0.193	30			
류	다이메틸다이설파이드	0.0022	0.369	4.975	14	0.014	0.051	9			
	아세트알데하이드	0.0015	0.044	0.172	7	0.044	0.119	4			
알 데	프로피온알데하이드	0.001	0.014	0.028	4	0.012	0.016	2			
하 이	뷰틸알데하이드	0.00067	0.017	0.029	6	0.014	0.028	4			
드류	n-발레르알데하이드	0.00041	0.005	0.007	3	0.009	0.011	2			
71	i-발레르알데하이드	0.0001	0.016	0.016	1	0.006	0.006	1			
	스타이렌	0.035	0.083	0.500	7	0.003	0.010	4			
	톨루엔	0.33	0.237	0.830	7	0.025	0.060	4			
V	자일렌	0.16	0.067	0.220	7	0.005	0.020	4			
O C	메틸에틸케톤	0.44	0.031	0.110	7	_	-	3			
S 류	메틸아이소뷰틸케톤	0.17	0.010	0.020	7	_	-	4			
	뷰틸아세테이트	0.008	0.016	0.040	7	0.005	0.010	2			
	i-뷰틸알코올	0.011	0.025	0.030	4	0.020	0.020	1			
	프로피온산	0.0057	_	-	_	_	-	_			
지 방	n−뷰틸산	0.00019	0.107	0.107	1	_	_	_			
산 류	n-발레르산	0.000037	0.026	0.026	1	_	_	-			
, ,	i-발레르산	0.000078	_	-	_	_	_	-			

<그림 3-4> 생물학적처리공정 지정악취물질 계열별 및 항목별 기여도

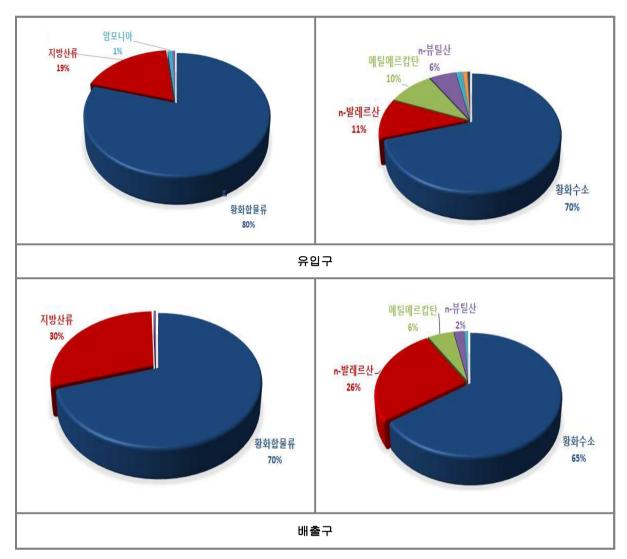

다. 슬러지처리공정

슬러지처리공정의 계열별 기여도는 대부분 황화합물류가 높은 비율을 차지하고 있으며, 슬러지저류조 및 탈수시설(탈수기실)은 지방산류가 일부 나타났다. 항목별 기여도는 황화합물류 중 황화수소, 메틸메르캅탄, 지방산류 중 n-뷰틸산의 기여도가 높게 나타났다.

<표 3-7> 슬러지처리공정 지정악취물질 농도

구 분	슬러지처리공정(ppm)												
지정악취물질(pp	om)	슬러지저류조 농:			5축시설	;축시설 탈		탈수시설(탈수기실)			탈수시설(케이크호퍼실)		
최소 항목 감지농도		평균	최대	시료수 (개)	평균	최대	시료수 (개)	균 평	최대	시료수 (개)	평균	최대	시료수 (개)
암모니아	1.5	0.551	11.1	45	0.100	0.300	5	0.150	0.300	4	_	_	_
트라이메틸아민	0.000032	0.005	0.027	12	0.001	0.001	2	0.001	0.001	2	-	-	_
황화수소	0.00041	56.3	1,534	114	13.8	320.5	36	1.861	55.7	54	0.122	0.651	14
메틸메르캅탄	0.00007	1.323	23.9	66	1.058	17.0	17	0.095	1.559	28	0.044	0.168	10
다이메틸설파이드	0.003	0.197	5.682	79	0.283	5.682	22	0.031	0.625	35	0.022	0.101	16
다이메틸다이설파이드	0.0022	0.129	4.415	38	0.007	0.025	9	0.010	0.082	17	0.008	0.039	12
아세트알데하이드	0.0015	0.040	0.340	74	0.021	0.040	13	0.021	0.062	10	_	_	_
프로피온알데하이드	0.001	0.012	0.060	52	0.013	0.056	9	0.004	0.008	4	-	-	_
뷰틸알데하이드	0.00067	0.026	0.271	72	0.015	0.062	13	0.016	0.033	10	-	-	_
n-발레르알데하이드	0.00041	0.011	0.044	19	0.027	0.044	3	0.020	0.020	1	-	-	_
i-발레르알데하이드	0.0001	0.018	0.085	13	0.035	0.045	2	-	-	-	-	-	_
스타이렌	0.035	0.064	2.220	71	0.043	0.320	10	0.015	0.060	10	-	-	_
톨루엔	0.33	0.403	11.2	76	0.043	0.170	13	0.077	0.230	10	-	-	_
자일렌	0.16	0.053	1.380	76	0.012	0.040	13	0.020	0.050	10	_	-	_
메틸에틸케톤	0.44	0.019	0.247	69	0.029	0.247	11	0.007	0.020	9	-	-	_
메틸아이소뷰틸케톤	0.17	0.007	0.230	74	0.003	0.010	13	0.007	0.020	10	_	-	_
뷰틸아세테이트	0.008	0.019	0.190	54	0.006	0.020	8	0.016	0.030	9	-	-	_
i-뷰틸알코올	0.011	0.011	0.040	41	0.006	0.013	4	0.016	0.050	8	_	-	-
프로피온산	0.0057	0.659	3.010	5	-	-	-	-	-	-	_	-	_
n−뷰틸산	0.00019	0.547	2.436	9	-	ı	-	ı	-	-	-	-	-
n−발레르산	0.000037	0.043	0.057	4	-	1	-	1	-	-	-	-	-
i-발레르산	0.000078	0.264	0.476	3	-	-	-	-	-	-	-	-	-
	지정악취물질(pp) 항목 암모니아 환화수소 에틸메르캅탄 다이메틸스마이설파이드 다이메틸스마이설파이드 다이메틸스마이설파이드 라브레르알데하이드 - 발레르알데하이드 - 발레르알데하이드 - 발레르알데하이드 - 비플레르알데하이드 - 나를레르알데하이드 - 나를 마플레르알데하이드 - 나를 마를 마를 마루틸알코올 - 프로피온산 - 마루틸산 - 마블레르산	N정악취물질(ppm) 항목	지정악취물질(pom) 출험 항목 최소 명균 암모니아 1.5 0.551 분라이메틸아민 0.000032 0.005 황화수소 0.00007 1.323 대의틸메르캅탄 0.0003 0.129 다이메틸삼파이드 0.0015 0.040 파로피온알데하이드 0.0015 0.012 마블레르알데하이드 0.00067 0.026 마블레르알데하이드 0.00041 0.011 나탈레르알데하이드 0.0001 0.018 스타이렌 0.035 0.064 톨루엔 0.33 0.403 재일렌 0.16 0.053 메틸에틸케톤 0.44 0.019 배틸아세테이트 0.008 0.019 나류틸알코올 0.011 0.011 프로피온산 0.0057 0.659 마ー뷰틸산 0.00019 0.547 마ー뷰티라 0.00037 0.043	항목 최소 기능도 평균 최대 항무니아 1.5 0.551 11.1 라이메틸아민 0.000032 0.005 0.027 황화수소 0.000041 56.3 1,534 메틸메르캄탄 0.00007 1,323 23.9 다이메틸설파이드 0.003 0.197 5.682 다이메틸살파이드 0.0015 0.040 0.340 프로피온알데하이드 0.001 0.012 0.060 뷰틸알데하이드 0.00041 0.011 0.044 i-발레르알데하이드 0.00041 0.011 0.044 i-발레르알데하이드 0.0001 0.018 0.085 스타이렌 0.035 0.064 2.220 톨루엔 0.33 0.403 11.2 자일렌 0.16 0.053 1.380 메틸에팅케톤 0.44 0.019 0.247 메틸아시타미트 0.008 0.019 0.190 i-뷰틸알코올 0.011 0.011 0.040 正井틸알코올 0.011 0.010 0.040 正井틸	항목 최소 가능도 명구 최대 시료수 (개) 항목 최소 가능도 명구 최대 시료수 (개) 항목 1.5 0.551 11.1 45 라이메틸아민 0.000032 0.005 0.027 12 황화수소 0.00007 1.323 23.9 66 다이메틸살파이드 0.0003 0.197 5.682 79 라이메틸살파이드 0.0022 0.129 4.415 38 아세트알데하이드 0.0015 0.040 0.340 74 프로피온알데하이드 0.001 0.012 0.060 52 마늘레르알데하이드 0.00041 0.012 0.060 52 마-발레르알데하이드 0.00041 0.011 0.044 19 나를레르알데하이드 0.00041 0.018 0.085 13 스타이렌 0.035 0.064 2.220 71 통무엔 0.33 0.403 11.2 76 메틸에틸케톤 0.14 0.019 0.247 69 메틸어이소뷰틸라 0.017 <td>항목 청소 가공도 평균 최대 시급수 (가비) 평균 항목 1.5 0.551 11.1 45 0.100 항화수소 0.000032 0.005 0.027 12 0.001 항화수소 0.000071 56.3 1,534 114 13.8 대틸메르캄탄 0.00007 1.323 23.9 66 1.058 다이메틸살파이드 0.003 0.197 5.682 79 0.283 라이메틸다이살파이드 0.0022 0.129 4.415 38 0.007 아세트알데하이드 0.001 0.012 0.060 52 0.013 파를알데하이드 0.001 0.012 0.060 52 0.013 파를알데하이드 0.0004 0.012 0.044 19 0.027 나탈레르알데하이드 0.0004 0.011 0.044 19 0.035 스타이렌 0.035 0.064 2.220 71 0.043 플루엔 0.33 0.403 11.2 76 0.043 파일에틸케톤<!--</td--><td>항목 최소 지정악취물질(ppm) 평균 최대 시료수 (가) 평균 최대 항목 1.5 0.551 11.1 45 0.100 0.300 항보니아 1.5 0.551 11.1 45 0.100 0.300 항화수소 0.00041 56.3 1,534 114 13.8 320.5 메틸메르라탄 0.00007 1.323 23.9 66 1.058 17.0 다이메틸살파이드 0.003 0.197 5.682 79 0.283 5.682 다이메틸라다이살파이드 0.0022 0.129 4.415 38 0.007 0.025 아세트알대하이드 0.0015 0.040 0.340 74 0.021 0.040 프로피온알대하이드 0.001 0.012 0.060 52 0.013 0.056 뉴틸라데라이드 0.00041 0.011 0.044 19 0.027 0.042 마발레르알대하이드 0.0001 0.018 0.085 13 0.035 0.045 스타이란 0.035 0.064</td><td>함목</td><td>함복</td><td>************************************</td><td>함복</td><td>지정악취물질(ppm)</td><td>함복</td></td>	항목 청소 가공도 평균 최대 시급수 (가비) 평균 항목 1.5 0.551 11.1 45 0.100 항화수소 0.000032 0.005 0.027 12 0.001 항화수소 0.000071 56.3 1,534 114 13.8 대틸메르캄탄 0.00007 1.323 23.9 66 1.058 다이메틸살파이드 0.003 0.197 5.682 79 0.283 라이메틸다이살파이드 0.0022 0.129 4.415 38 0.007 아세트알데하이드 0.001 0.012 0.060 52 0.013 파를알데하이드 0.001 0.012 0.060 52 0.013 파를알데하이드 0.0004 0.012 0.044 19 0.027 나탈레르알데하이드 0.0004 0.011 0.044 19 0.035 스타이렌 0.035 0.064 2.220 71 0.043 플루엔 0.33 0.403 11.2 76 0.043 파일에틸케톤 </td <td>항목 최소 지정악취물질(ppm) 평균 최대 시료수 (가) 평균 최대 항목 1.5 0.551 11.1 45 0.100 0.300 항보니아 1.5 0.551 11.1 45 0.100 0.300 항화수소 0.00041 56.3 1,534 114 13.8 320.5 메틸메르라탄 0.00007 1.323 23.9 66 1.058 17.0 다이메틸살파이드 0.003 0.197 5.682 79 0.283 5.682 다이메틸라다이살파이드 0.0022 0.129 4.415 38 0.007 0.025 아세트알대하이드 0.0015 0.040 0.340 74 0.021 0.040 프로피온알대하이드 0.001 0.012 0.060 52 0.013 0.056 뉴틸라데라이드 0.00041 0.011 0.044 19 0.027 0.042 마발레르알대하이드 0.0001 0.018 0.085 13 0.035 0.045 스타이란 0.035 0.064</td> <td>함목</td> <td>함복</td> <td>************************************</td> <td>함복</td> <td>지정악취물질(ppm)</td> <td>함복</td>	항목 최소 지정악취물질(ppm) 평균 최대 시료수 (가) 평균 최대 항목 1.5 0.551 11.1 45 0.100 0.300 항보니아 1.5 0.551 11.1 45 0.100 0.300 항화수소 0.00041 56.3 1,534 114 13.8 320.5 메틸메르라탄 0.00007 1.323 23.9 66 1.058 17.0 다이메틸살파이드 0.003 0.197 5.682 79 0.283 5.682 다이메틸라다이살파이드 0.0022 0.129 4.415 38 0.007 0.025 아세트알대하이드 0.0015 0.040 0.340 74 0.021 0.040 프로피온알대하이드 0.001 0.012 0.060 52 0.013 0.056 뉴틸라데라이드 0.00041 0.011 0.044 19 0.027 0.042 마발레르알대하이드 0.0001 0.018 0.085 13 0.035 0.045 스타이란 0.035 0.064	함목	함복	************************************	함복	지정악취물질(ppm)	함복

주) 탈수시설(케이크호퍼실)은 실내공간으로 주요 측정항목이 황화합물류임.


<그림 3-5> 슬러지처리공정 지정악취물질 계열별 및 항목별 기여도

라. 악취방지시설

악취방지시설로 유입되는 주요 지정악취물질의 기여도는 황화합물류 및 지방 산류가 높은 비율을 차지하며, 항목별 기여도는 황화수소가 상대적으로 높게 나타났다.

<표 3-8> 악취방지시설 지정악취물질 농도

	구 분		악취방지시설(ppm)								
	지정악취물질(pp		유입구				배출구		처리효율		
항목		최소 감지농도	평균	최대	시료수 (개)	평균	최대	시료수 (개)	(평균,%)		
	암모니아 1.		0.627	34.9	91	0.325	7.200	67	48		
	트라이메틸아민	0.000032	0.014	0.189	26	0.002	0.008	13	86		
황	황화수소	0.00041	12.338	420.3	197	11.707	468.3	106	5		
) 화 합	메틸메르캅탄	0.00007	0.298	23.9	129	0.169	2.881	75	43		
물	다이메틸설파이드	0.003	0.135	1.804	144	0.110	0.968	76	19		
류 	다이메틸다이설파이드	0.0022	0.074	1.159	88	0.050	0.924	37	32		
OL	아세트알데하이드	0.0015	0.033	0.228	134	0.032	0.223	120	3		
알 데	프로피온알데하이드	0.001	0.013	0.090	80	0.012	0.082	78	8		
하 이	뷰틸알데하이드	0.00067	0.019	0.075	120	0.019	0.073	111	_		
드 류	n-발레르알데하이드	0.00041	0.015	0.103	30	0.007	0.018	17	53		
	i-발레르알데하이드	0.0001	0.013	0.047	11	0.012	0.019	6	8		
	스타이렌	0.035	0.065	3.940	119	0.034	1.410	105	48		
	톨루엔	0.33	0.156	4.330	133	0.103	2.280	121	34		
V	자일렌	0.16	0.059	2.110	132	0.025	0.470	121	58		
С	메틸에틸케톤	0.44	0.011	0.080	121	0.011	0.070	110	_		
S 류	메틸아이소뷰틸케톤	0.17	0.004	0.040	126	0.003	0.020	111	25		
	뷰틸아세테이트	0.008	0.012	0.190	102	0.009	0.040	82	25		
	i-뷰틸알코올	0.011	0.019	0.400	82	0.014	0.136	65	26		
	프로피온산	0.0057	1.445	13.1	21	0.922	6.164	8	36		
지 방	n-뷰틸산	0.00019	0.471	3.077	23	0.185	0.674	24	61		
산 류	n-발레르산	0.000037	0.174	0.834	11	0.429	0.693	3	_		
	i-발레르산	0.000078	0.049	0.068	5	0.028	0.028	1	43		

<그림 3-6> 악취방지시설 지정악취물질 계열별 및 항목별 기여도

3.2.3 총괄(복합악취 및 지정악취물질)

폐수처리공정에서의 복합악취는 슬러지처리공정의 슬러지저류조에서 상대적으로 높게 발생하고 있으며, 생물반응조(호기조) 및 실내공간(협잡물반출실, 탈수시설 (케이크호퍼실))에서 낮은 복합악취를 보이고 있다.

지정악취물질은 계열별 기여도는 황화합물류 및 지방산류가 높은 비율을 차지하고 있으며, 항목별 기여도는 황화수소, 메틸메르캅탄, n-발레르산 등이 높게나타났다.

<표 3-9> 처리공정별 복합악취 및 주요 지정악취물질 기여도

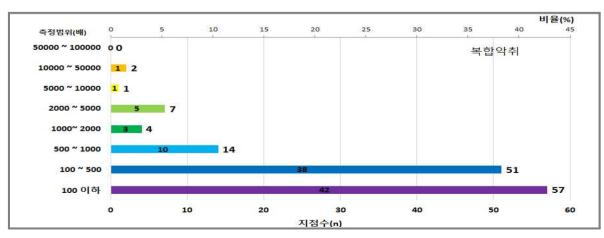
		복합악취(평균)	주요 지정악취	물질 기여도(%)	
	구 분	(84)	계열별	항목별	
	전처리시설 (스크린 등)	827	지방산류 62% 황화합물류 35%	n-발레르산 51%, 메틸메르캅탄 18%	
전처리공정	협잡물반출실	325	-	-	
선서다등장	유량조정조	8,341	황화합물류 93%, 지방산류 6%	황화수소 85%, n-발레르산 3%	
	1차침전지	1,686	황화합물류 76%, 지방산류 24%	황화수소 70%, n-발레르산 23%	
생물학적	생물반응조 (혐기조)	2,901	황화합물류 97%, 지방산류 3%	황화수소 83%, n-발레르산 2%	
처리공정	생물반응조 (호기조)	140	황화합물류 93%, 지방산류 7%	메틸메르캅탄 81%	
	슬러지저류조	8,869	황화합물류 95%, 지방산류 5%	황화수소 84%, n-발레르산 2%	
슬러지	농축시설	4,182	황화합물류 94%	황화수소 65%, 메틸메르캅탄 29%	
처리공정	탈수시설 (탈수기실)	1,292	황화합물류 92%, 지방산류 7%	황화수소 71%, n-발레르산 7%	
	탈수시설 (케이크호퍼실)	306	-	-	
악취	유입구	2,713	황화합물류 80%, 지방산류 19%	황화수소 70%, n-발레르산 11%	
방지시설	배출구	1,934	황화합물류 70%, 지방산류 30%	메틸메르캅탄 65%, n-발레르산 26%	

3.3 발생원별 악취물질 측정·분석

3.3.1 전처리공정

전처리공정은 폐수 중에 포함되어 있는 협잡물, 모래 및 비부패성 무기질 입자를 제거할 목적으로 설치된 시설로서, 하수처리시설의 전처리공정과 유사하나, 폐수특성에 따라 물리화학적처리방식(가압부상조 등)을 적용하는 시설이 있다.

가. 전처리시설(스크린시설, 침사시설 등)

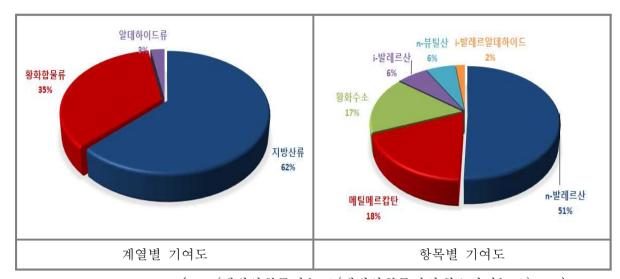

전처리시설은 스크린시설, 침사제거기 등이 설치되어 있으며, 주요 측정지점은 시설 내부 및 실내공간이다.

(1) 복합악취

전처리시설에서 발생하는 복합악취 측정범위는 100배 이하 42%, 100~500배가 38%로 높은 비율을 차지하고 500~1,000배 10%, 2,000~5,000배 5%순이며, 5,000배를 초과하는 경우는 2%로 나타났다.

<표 3-10> 전처리시설(스크린시설, 침사시설 등) 복합악취 측정범위

-	복합악취(총 시료수 : 136개)	
 측정범위(배)	비율(%)	시료수(개)
5,000 초과	2	3
2,000 ~ 5,000	5	7
1,000 ~ 2,000	3	4
500 ~ 1,000	10	14
100 ~ 500	38	51
100 이하	42	57



<그림 3-7> 전처리시설(스크린시설, 침사시설 등) 복합악취 측정범위

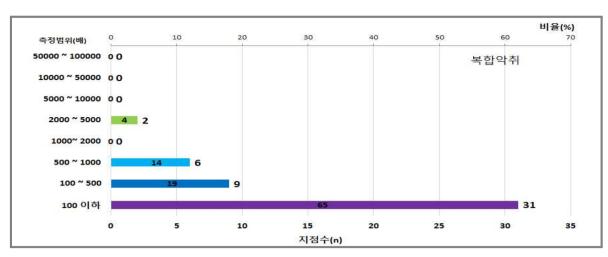
지정악취물질 계열별 기여도는 지방산류 62%, 황화합물류 35%로 대부분을 차지하며, 항목별 기여도는 n-발레르산 51%, 메틸메르캅탄 18%, 황화수소 17% 순으로 나타났다.

<표 3-11> 전처리시설(스크린시설, 침사시설 등) 지정악취물질 농도 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.177	23	-	54	15	8	ĺ	13
	트라이메틸아민	0.000032	0.001	100	_	_	_	_	-	2
=1	황화수소	0.00041	0.760	_	17	25	33	16	9	69
황 화	에틸에르캅탄	0.00007	0.144	2	20	49	24	2	3	41
합 뭔 류	다이메틸설파이드	0.003	0.061	5	40	37	13	5	_	40
П	다이메틸다이설파이드	0.0022	0.064	5	40	40	10	5	_	20
	아세트알데하이드	0.0015	0.051	_	13	74	13	-	-	16
알 데	프로피온알데하이드	0.001	0.012	_	29	71	_	-	_	14
하 이	뷰틸알데하이드	0.00067	0.015	-	19	81	_	-	-	16
드 류	n-발레르알데하이드	0.00041	0.006	-	50	50	_	_	_	2
	i-발레르알데하이드	0.0001	0.022	-	-	100	-	-	-	1
	스타이렌	0.035	0.062	47	6	35	6	6	-	17
	톨루엔	0.33	0.195	11	-	46	32	11	-	19
V O	자일렌	0.16	0.421	37	5	42	5	5	6	19
С	메틸에틸케톤	0.44	0.011	41	6	53	-	-	ı	17
S 류	메틸아이소뷰틸케톤	0.17	0.004	66	6	28	-	-	ı	18
	뷰틸아세테이트	0.008	0.009	53	_	47	_	-	-	15
	i-뷰틸알코올	0.011	0.012	38	-	62	-	_	-	13
	프로피온산	0.0057	0.137	_	_	_	100	_	-	2
지 방	n−뷰틸산	0.00019	0.132	_	-	-	100	-	-	2
산 류	n-발레르산	0.000037	0.209	-	_	-	100	-	-	1
	i−발레르산	0.000078	0.055	_	_	100	_	_	-	2

※ 악취기여도(%): { (개별악취물질농도/개별악취물질의최소감지농도) [(개별악취물질농도/개별악취물질의최소감지농도)]의총합 }×100 <그림 3-8> 전처리시설(스크린시설, 침사시설 등) 지정악취물질 기여도

나. 협잡물반출실

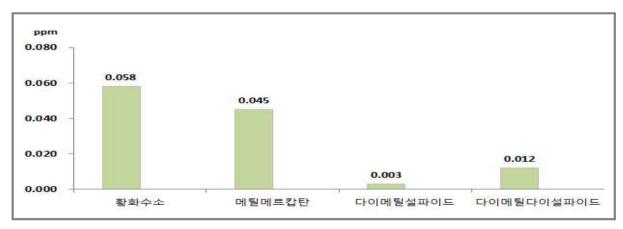

협잡물반출실은 전처리시설에서 발생한 침사 및 협잡물을 적재함에 일정기간 보관 후 외부 반출하는 시설이며, 주요 측정지점은 적재함 및 실내공간이다.

(1) 복합악취

협잡물반출실에서 발생하는 복합악취 측정범위는 100배 이하가 65%로 높은 비율을 차지하고 100~500배가 19%, 500~1,000배 14%, 2,000~5,000배 4%순으로 나타났다.

<표 3-12> 협잡물반출실 복합악취 측정범위

	복합악취(총 시료수 : 48개)									
측정범위(배)	비율(%)	시료수(개)								
5,000 초과	-	_								
2,000 ~ 5,000	4	2								
1,000 ~ 2,000	_	_								
500 ~ 1,000	14	6								
100 ~ 500	19	9								
100 이하	65	31								



<그림 3-9> 협잡물반출실 복합악취 측정범위

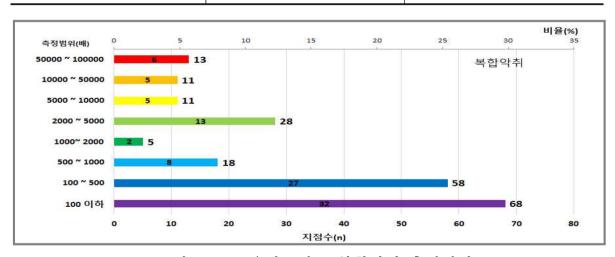
협잡물반출실은 지정악취물질 중 대부분 황화합물류를 측정하였으며, 항목별 평균농도는 황화수소 0.058ppm, 메틸메르캅탄 0.045ppm, 다이메틸설파이드 0.003ppm, 다이메틸다이설파이드 0.012ppm순으로 나타났다.

<표 3-13> 협잡물반출실 지정악취물질 농도 측정범위

		최소감지농도	 평균	비율(%)						시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
하	황화수소	0.00041	0.058	_	50	42	8	_	_	12
황 화	메틸메르캅탄	0.00007	0.045	_	40	40	20	-	_	5
합 뭔 따	다이메틸설파이드	0.003	0.003	_	86	14	_	_	_	7
11	다이메틸다이설파이드	0.0022	0.012	_	60	40	_	-	_	5

<그림 3-10> 협잡물반출실 황화합물류 평균 농도

다. 유량조정조

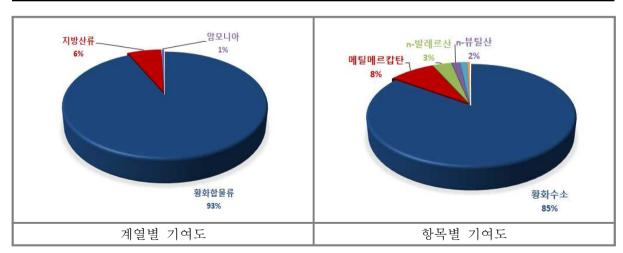

유량조정조는 시간대별 유입하수량의 변동폭이 크고, 처리공법 특성상 후속 공정에 폐수의 균질화 및 균등분배가 필요한 경우 일시 저류하는 시설이며, 주요 측정지점은 조 내부이다.

(1) 복합악취

유량조정조에서 발생하는 복합악취 측정범위는 100배 이하 31%, 100~500배가 27%로 높은 비율을 차지하고 2,000~5,000배 13%, 500~1,000배 8%순이며, 5,000배를 초과하는 경우는 18%인 것으로 나타났다.

<표 3-14> 유량조정조 복합악취 측정범위

	복합악취(총 시료수 : 212개)	
 측정범위(배)	비율(%)	시료수(개)
5,000 초과	18	35
2,000 ~ 5,000	13	28
1,000 ~ 2,000	2	5
500 ~ 1,000	8	18
100 ~ 500	27	58
100 이하	32	68


<그림 3-11> 유량조정조 복합악취 측정범위

(2) 지정악취물질

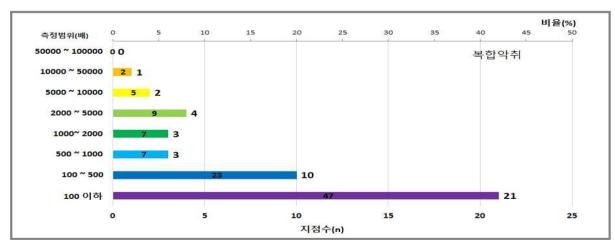
지정악취물질 계열별 기여도는 황화합물류 93%, 지방산류 6%로 대부분을 차지하며, 항목별 기여도는 황화수소 85%, 메틸메르캅탄 8%, n-발레르산 3%, n-뷰틸산 2%순으로 나타났다.

<표 3-15> 유량조정조 지정악취물질 농도 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(mqq)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
	암모니아	1.5	0.925	33	_	42	20	5	-	43
트라이메틸아민		0.000032	0.012	45	45	5	5	_	-	20
황	황화수소	0.00041	24.7	2	6	29	26	9	28	171
화 합	메틸메르캅탄	0.00007	0.415	1	13	51	20	9	6	126
물	다이메틸설파이드	0.003	0.112	4	15	58	19	4	ı	106
류	다이메틸다이설파이드	0.0022	0.111	11	25	39	20	5	-	61
알	아세트알데하이드	0.0015	0.062	1	1	89	6	3	_	101
데 하	프로피온알데하이드	0.001	0.013	3	31	65	1	_	-	72
10	뷰틸알데하이드	0.00067	0.024	1	13	84	2	_	-	94
	n-발레르알데하이드	0.00041	0.008	6	50	44	-	_	-	18
류	i-발레르알데하이드	0.0001	0.010	11	11	78	-	_	-	9
	스타이렌	0.035	0.021	55	7	37	-	1	-	83
V	톨루엔	0.33	0.086	23	_	60	11	6	ı	101
V O	자일렌	0.16	0.030	44	3	50	1	2	-	100
С	메틸에틸케톤	0.44	0.009	43	2	55	_	_	-	84
S 류	메틸아이소뷰틸케톤	0.17	0.003	61	8	31	-	_	-	95
ਜ	뷰틸아세테이트	0.008	0.011	47	5	47	1	_	-	72
	i-뷰틸알코올	0.011	0.013	47	4	45	4	-	_	55
TI	프로피온산	0.0057	0.308	-	_	38	38	24	ı	13
지 방	n−뷰틸산	0.00019	0.213	-	_	29	65	6	_	17
산 류	n-발레르산	0.000037	0.092		13	62	25	_	-	8
<i>TT</i>	i-발레르산	0.000078	0.070	_	_	60	40	_	-	5

<그림 3-12> 유량조정조 지정악취물질 기여도

라. 1차침전지

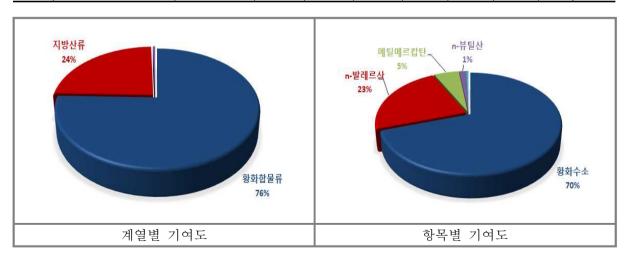

1차침전지는 유입된 폐수 중에 함유된 부유물질(SS)과 비중이 가벼운 유지류 및 그리스 등의 스컴(Scum)등을 사전에 제거함으로써 생물학적 처리공정의 처리 효율을 향상시키기 위한 시설이며, 주요 측정지점은 지 내부 및 실내공간이다.

(1) 복합악취

1차침전지에서 발생하는 복합악취 측정범위는 100배 이하 47%, 100~500배가 23%로 높은 비율을 차지하고 2,000~5,000배 9%, 500~1,000배 7%순이며, 5,000배를 초과하는 경우는 7%인 것으로 나타났다.

<표 3-16> 1차침전지 복합악취 측정범위

	복합악취(총 시료수 : 44개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	7	3
2,000 ~ 5,000	9	4
1,000 ~ 2,000	7	3
500 ~ 1,000	7	3
100 ~ 500	23	10
100 이하	47	21


<그림 3-13> 1차침전지 복합악취 측정범위

(2) 지정악취물질

지정악취물질 계열별 기여도는 황화합물류 76%, 지방산류 24%로 대부분을 차지하며, 항목별 기여도는 황화수소 70%, n-발레르산 23%, 메틸메르캅탄 5%순으로 나타났다.

<표 3-17> 1차침전지 지정악취물질 농도 측정범	< 丑	3-17>	1차침전지	지정악취물질	농도	측정범위
------------------------------	-----	-------	-------	--------	----	------

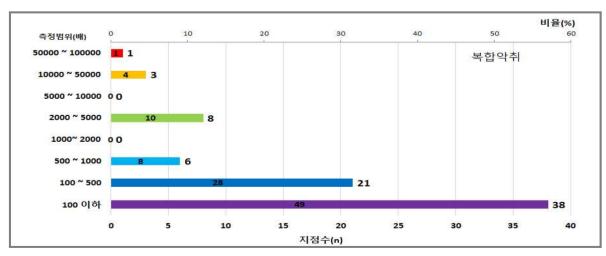
		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(JH)
	암모니아	1.5	0.221	-	-	66	17	17	_	6
	트라이메틸아민	0.000032	0.001	80	20	-	-	-	-	5
황	황화수소	0.00041	5.277	_	8	21	13	21	37	24
화 합	메틸메르캅탄	0.00007	0.069	20	10	50	20	_	_	10
물	다이메틸설파이드	0.003	0.290	18	9	45	9	9	10	11
류	다이메틸다이설파이드	0.0022	0.076	42	29	_	29	_	_	7
알	아세트알데하이드	0.0015	0.048	_	1	86	14	_	_	7
데 하 이 드	프로피온알데하이드	0.001	0.013	_	17	83	_	_	_	6
	뷰틸알데하이드	0.00067	0.021		ĺ	100	-	_	_	8
	n-발레르알데하이드	0.00041	0.003	_	100	_	_	_	_	2
류	i-발레르알데하이드	0.0001	_	_	_	-	-	_	_	_
	스타이렌	0.035	0.009	71	-	29	-	_	_	7
V	톨루엔	0.33	0.045	22	-	67	11	_	_	9
V O	자일렌	0.16	0.009	44	_	56	_	_	_	9
С	메틸에틸케톤	0.44	0.009	29	_	71	_	_	_	7
S 류	메틸아이소뷰틸케톤	0.17	0.002	74	13	13	-	_	-	8
뉴	뷰틸아세테이트	0.008	0.001	83	_	17	_	_	_	6
	i-뷰틸알코올	0.011	0.004	60	-	40	-	-	-	5
TI	프로피온산	0.0057	0.079	_	-	100	-	-	-	1
지 방	n−뷰틸산	0.00019	0.049	_	-	100	-	_	-	1
산 류	n-발레르산	0.000037	0.155	_	-	_	100	_	_	1
77	i-발레르산	0.000078	-	-	-	-	_	-	-	

<그림 3-14> 1차침전지 지정악취물질 기여도

3.3.2 생물학적처리공정

생물학적처리공정은 폐수중의 Colloid성 및 용해성 유기물을 미생물에 의해 생물학적으로 제거하는 공정으로써 단위공정 중 핵심이 되는 주요 공정이다.

가. 생물반응조(혐기조)

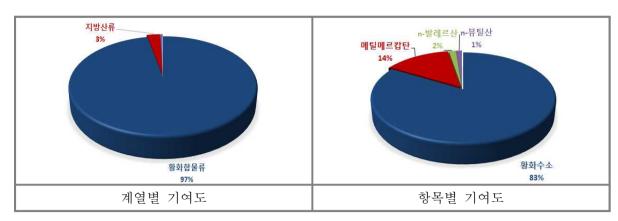

생물반응조(혐기조)는 혐기성 미생물을 이용하여 유기물 분해 및 인 용출작용으로 처리수질을 개선하는 역할을 하며, 주요 측정지점은 조 내부이다.

(1) 복합악취

생물반응조(혐기조)에서 발생하는 복합악취 측정범위는 100배 이하가 49%로 높은 비율을 차지하고 100~500배 28%, 2,000~5,000배 10%순이며, 5,000배를 초과하는 경우는 5%인 것으로 나타났다.

<표 3-18> 생물반응조(혐기조) 복합악취 측정범위

	복합악취(총 시료수 : 77개)									
측정범위(배)	비율(%)	시료수(개)								
5,000 초과	5	4								
2,000 ~ 5,000	10	8								
1,000 ~ 2,000	_	_								
500 ~ 1,000	8	6								
100 ~ 500	28	21								
100 이하	49	38								



<그림 3-15> 생물반응조(혐기조) 복합악취 측정범위

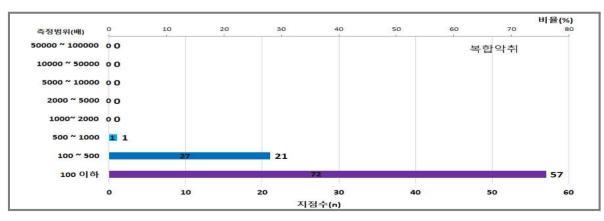
지정악취물질 기여도는 황화합물류 97%, 지방산류 3%순이며, 황화합물류 중황화수소가 83%, 메틸메르캅탄 14%, 지방산류 중 n-발레르산이 2%로 나타났다.

<표 3-19> 생물반응조(혐기조) 지정악취물질 농도 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(JH)
	암모니아	1.5	0.200	-	-	17	83	-		6
	트라이메틸아민	0.000032	-	-	-	-	_	-	-	_
	황화수소	0.00041	15.7	-	17	42	11	6	24	36
황 화	메틸메르캅탄	0.00007	0.446	5	18	41	9	23	4	22
합물	다이메틸설파이드	0.003	0.110	5	12	60	15	8	-	40
류	다이메틸다이설파이드	0.0022	0.369	21	21	50	_	_	8	14
	아세트알데하이드	0.0015	0.044	_	_	86	14	_	_	7
알 데	프로피온알데하이드	0.001	0.014	_	_	100	_	_	_	4
하 이	뷰틸알데하이드	0.00067	0.017	-	_	100	-	-	_	6
드류	n-발레르알데하이드	0.00041	0.005	-	33	67	-	-	1	3
71	i-발레르알데하이드	0.0001	0.016	_	_	100	_	_	-	1
	스타이렌	0.035	0.083	29	-	57	14	-	_	7
	톨루엔	0.33	0.237	-	_	43	43	14	_	7
V	자일렌	0.16	0.067	42	_	29	29	-	-	7
O C	메틸에틸케톤	0.44	0.031	29	_	57	14	-	-	7
S 류	메틸아이소뷰틸케톤	0.17	0.010	29	-	71	_	-	-	7
	뷰틸아세테이트	0.008	0.016	14	-	86	_	-	-	7
	i-뷰틸알코올	0.011	0.025	-	-	100	_	-	-	4
	프로피온산	0.0057	-	-	-	-	_	-	-	_
지 방	n−뷰틸산	0.00019	0.107	-	-	-	100	-	-	1
산 류	n-발레르산	0.000037	0.026	-	-	100	_	-	-	1
	i-발레르산	0.000078	_	_	_	_	_	_	_	0

<그림 3-16> 생물반응조(혐기조) 지정악취물질 기여도

나. 생물반응조(호기조)

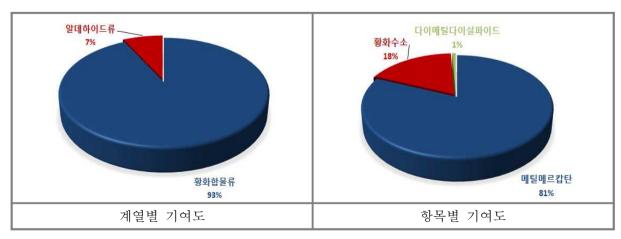

생물반응조(호기조)는 호기성 미생물을 이용하여 유기물 분해 및 질산화과정을 통해 처리수질을 개선하는 역할을 하며, 주요 측정지점은 조 내부이다.

(1) 복합악취

생물반응조(호기조)에서 발생하는 복합악취 측정범위는 100배 이하 72%, 100 ~500배 27%로 대부분을 차지하고 있다.

<표 3-20> 생물반응조(호기조) 복합악취 측정범위

복합악취(총 시료수 : 79개)								
측정범위(배)	비율(%)	시료수(개)						
5,000 초과	-	-						
2,000 ~ 5,000	_	_						
1,000 ~ 2,000	_	_						
500 ~ 1,000	1	1						
100 ~ 500	27	21						
100 이하	72	57						



<그림 3-17> 생물반응조(호기조) 복합악취 측정범위

지정악취물질 계열별 기여도는 황화합물류가 93%로 대부분이며, 나머지는 알데하이드류 7%이고 지방산류는 불검출되었다. 항목별 기여도는 메틸메르 캅탄 81%, 황화수소 18%순으로 나타났다.

<표 3-21> 생물반응조(호기조) 지정악취물질 농도 측정범위

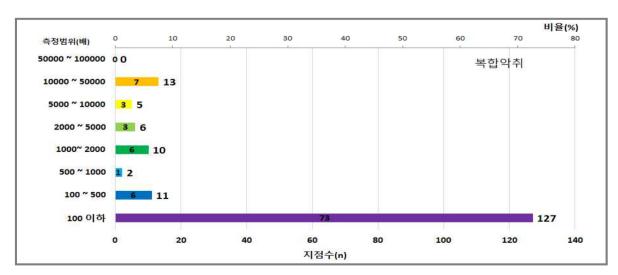
		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.400	50	_	-	_	50	ı	2
	트라이메틸아민	0.000032	-	_	_	-	_	_	ı	_
황	황화수소	0.00041	0.159	-	38	42	10	10	-	21
화	메틸메르캅탄	0.00007	0.099	10	20	50	10	10	-	10
합 물	다이메틸설파이드	0.003	0.034	3	50	33	14	-	1	30
류	다이메틸다이설파이드	0.0022	0.014	-	67	33	_	-		9
알	아세트알데하이드	0.0015	0.044	-	25	50	25	_	-	4
데	프로피온알데하이드	0.001	0.012	-	_	100	_	_	-	2
하 이	뷰틸알데하이드	0.00067	0.014	-	_	100	_	_	-	4
<u>_</u>	n-발레르알데하이드	0.00041	0.009	-	_	100	_	_	-	2
류	i-발레르알데하이드	0.0001	0.006	-	_	100	_	_	-	1
	스타이렌	0.035	0.003	75	-	25	-	-	_	4
V	톨루엔	0.33	0.025	50	_	50	_	_	-	4
0	자일렌	0.16	0.005	75	_	25	_	_	ı	4
С	메틸에틸케톤	0.44	0.000	100	_	_	_	_	ı	3
S 류	메틸아이소뷰틸케톤	0.17	0.000	100	_	-	_		ı	4
듀	뷰틸아세테이트	0.008	0.005	50	_	50	_	-	_	2
	i-뷰틸알코올	0.011	0.020	-	_	100	_	_	_	1

<그림 3-18> 생물반응조(호기조) 지정악취물질 기여도

3.3.3 슬러지처리공정

슬러지처리공정은 폐수처리시설에서 발생하는 슬러지의 함수율을 감소시키는 처리공정으로 주요시설은 슬러지저류조, 농축시설, 탈수시설로 구성되어 있다.

가. 슬러지저류조

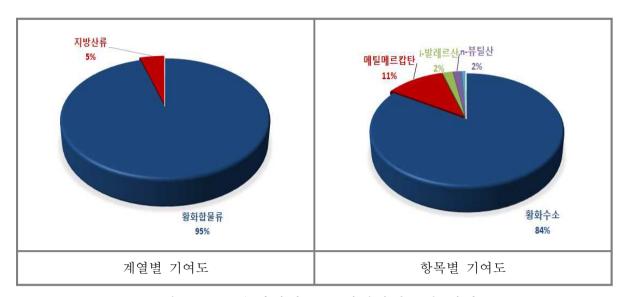

슬러지저류조의 대부분은 폐수처리공정에서 발생된 슬러지를 일시 저류하는 시설이며, 주요 측정지점은 조 내부이다.

(1) 복합악취

슬러지저류조에서 발생하는 복합악취 측정범위는 100배 이하 73%, 100~500배 6%, 1,000~2,000배 6%순으로 나타났으며, 5,000배를 초과하는 경우는 11%인 것으로 나타났다.

<표 3-22> 슬러지저류조 복합악취 측정범위

복합악취(총 시료수 : 174개)								
측정범위(배)	비율(%)	시료수(개)						
5,000 초과	11	18						
2,000 ~ 5,000	3	6						
1,000 ~ 2,000	6	10						
500 ~ 1,000	1	2						
100 ~ 500	6	11						
100 이하	73	127						



<그림 3-19> 슬러지저류조 복합악취 측정범위

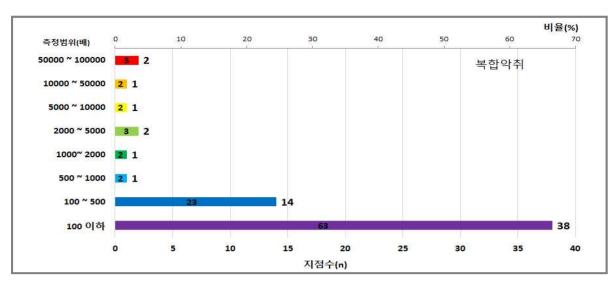
지정악취물질 계열별 기여도는 황화합물류가 95%로 대부분이고 지방산류가 5%로 나타났으며, 항목별 기여도는 황화합물류 중 황화수소가 84%, 메틸메르 캅탄 11%로 대부분을 차지하는 것으로 나타났다.

<표 3-23> 슬러지저류조 지정악취물질 농도 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.551	27	-	33	20	18	2	45
	트라이메틸아민	0.000032	0.005	50	25	25	-	-	-	12
	황화수소	0.00041	56.3	4	15	34	18	6	23	114
황 화	메틸메르캅탄	0.00007	1.323	5	26	42	11	9	7	66
합뭰	다이메틸설파이드	0.003	0.197	4	29	52	10	3	2	79
류	다이메틸다이설파이드	0.0022	0.129	13	33	54	_	_	_	38
	아세트알데하이드	0.0015	0.040	3	3	87	7	_	_	74
알 데	프로피온알데하이드	0.001	0.012	4	15	81	-	-	-	52
하 이	뷰틸알데하이드	0.00067	0.026	3	8	86	3	-	-	72
드류	n-발레르알데하이드	0.00041	0.011	11	21	68	-	_	_	19
71	i-발레르알데하이드	0.0001	0.018	15	31	54	-	-	-	13
	스타이렌	0.035	0.064	41	8	44	4	1	2	71
	톨루엔	0.33	0.403	12	_	55	16	13	4	76
V	자일렌	0.16	0.053	38	1	55	5	1	_	76
O C	메틸에틸케톤	0.44	0.019	34	4	59	3	-	_	69
S 류	메틸아이소뷰틸케톤	0.17	0.007	53	11	35	1	-	_	74
	뷰틸아세테이트	0.008	0.019	37	6	51	6	-	_	54
	i-뷰틸알코올	0.011	0.011	34	7	59	-	-	-	41
	프로피온산	0.0057	0.659	_	-	80	-	-	20	5
지 방	n−뷰틸산	0.00019	0.547	_	-	33	33	22	12	9
산 류	n-발레르산	0.000037	0.043	_	-	100	-	-	_	4
	i-발레르산	0.000078	0.264	_	_	_	100	_	_	3

<그림 3-20> 슬러지저류조 지정악취물질 기여도

나. 농축시설

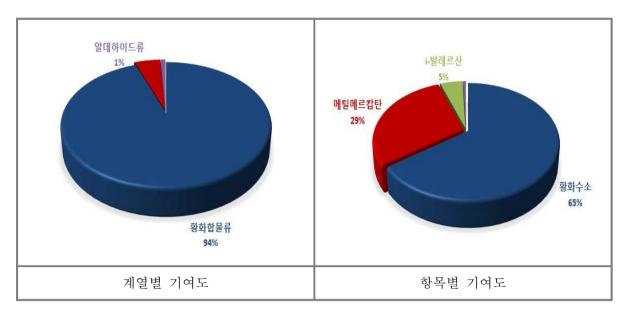

농축시설은 중력식농축조 및 기계식농축기 등으로 구성되어 있고 슬러지 농도를 높이는 역할을 하며, 주요 측정지점은 농축조 내부, 농축기 주변 및 실내공간 이다.

(1) 복합악취

농축시설에서 발생하는 복합악취 측정범위는 100배 이하 63%, 100~500배 23%, 2,000~5,000배 3%순으로 나타났으며, 5,000배 초과가 7%로 나타났다.

<표 3-24> 농축시설 복합악취 측정범위

복합악취(총 시료수 : 60개)								
측정범위(배)	비율(%)	시료수(개)						
5,000 초과	7	4						
2,000 ~ 5,000	3	2						
1,000 ~ 2,000	2	1						
500 ~ 1,000	2	1						
100 ~ 500	23	14						
100 이하	63	38						



<그림 3-21> 농축시설 복합악취 측정범위

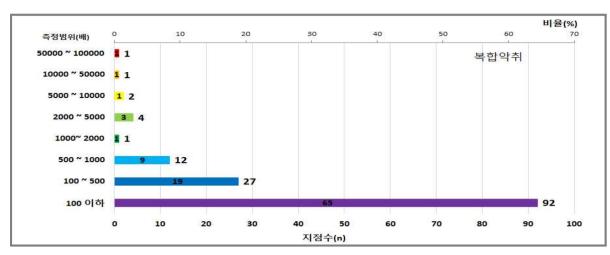
지정악취물질 계열별 기여도는 황화합물류 94%로 대부분이며, 항목별 기여도는 황화합물류 중 황화수소 65%. 메틸메르캅탄 29%순으로 나타났다.

<표 3-25> 농축시설 지정악취물질 농도 측정범위

		최소감지농도 평균	평균	비율(%) 평균						시료수
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
	암모니아	1.5	0.100	60	_	_	40	_	-	5
	트라이메틸아민	0.000032	0.001	100	_		_	_	-	2
황	황화수소	0.00041	13.822	3	22	47	14	6	8	36
화 합	메틸메르캅탄	0.00007	1.058	_	35	47	6	6	6	17
물	다이메틸설파이드	0.003	0.283	_	18	73	5	_	4	22
류	다이메틸다이설파이드	0.0022	0.007	11	56	33	_	_	-	9
알	아세트알데하이드	0.0015	0.021	_	_	100	_	_	-	13
데	프로피온알데하이드	0.001	0.013	_	33	67	_	_	-	9
하 01	뷰틸알데하이드	0.00067	0.015	15	15	70	_	_	-	13
<u></u>	n-발레르알데하이드	0.00041	0.027	_	_	100	_	_	-	3
류	i-발레르알데하이드	0.0001	0.035	_	_	100	_	_	-	2
	스타이렌	0.035	0.043	60	_	30	10	_	-	10
V	톨루엔	0.33	0.043	23	_	62	15	_	-	13
0	자일렌	0.16	0.012	30	8	62	-	-	_	13
C	메틸에틸케톤	0.44	0.029	45	_	45	10		-	11
S	메틸아이소뷰틸케톤	0.17	0.003	69	8	23	_	-	-	13
류	뷰틸아세테이트	0.008	0.006	62	_	38	_	_	-	8
	i-뷰틸알코올	0.011	0.006	50	_	50	_	_	ı	4

<그림 3-22> 농축시설 지정악취물질 기여도

다. 탈수시설(탈수기실)


탈수시설(탈수기실)은 폐수처리공정에서 발생한 슬러지의 함수율을 감소시켜 최종처분하기 위한 시설이며, 주요 측정지점은 탈수기 주변 및 실내공간이다.

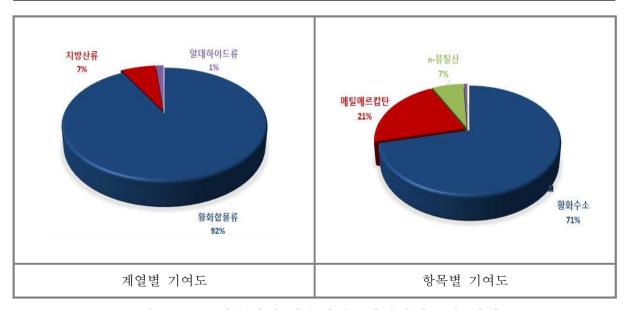
(1) 복합악취

탈수시설(탈수기실)에서 발생하는 복합악취 측정범위는 100배 이하 65%, 100 ~500배 19%, 500~1,000배 9%순으로 나타났으며, 500배 이하가 84%로 대부분을 차지하는 것으로 나타났다.

<표 3-26> 탈수시설(탈수기실) 복합악취 측정범위

복합악취(총 시료수 : 140개)								
측정범위(배)	비율(%)	시료수(개)						
5,000 초과	3	4						
2,000 ~ 5,000	3	4						
1,000 ~ 2,000	1	1						
500 ~ 1,000	9	12						
100 ~ 500	19	27						
100 이하	65	92						

<그림 3-23> 탈수시설(탈수기실) 복합악취 측정범위


지정악취물질 계열별 기여도는 황화합물류(92%) 및 지방산류(7%)가 대부분이고, 항목별 기여도는황화수소 71%, 메틸메르캅탄 21%, n-뷰틸산 7%순으로 나타났다.

<표 3-27> 탈수시설(탈수기실) 지정악취물질 농도 측정범위

		최소감지농도	평균	비율(%)						시료수
	구 분	(ppm)	(nnm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
	암모니아	1.5	0.150	25	_	25	50	_	-	4
	트라이메틸아민	0.000032	0.001	100	_	-	-	_	-	2
<u></u> 황	황화수소	0.00041	1.861	4	26	41	15	6	8	54
전 화 합	메틸메르캅탄	0.00007	0.095	4	28	50	14	4	ı	28
물류	다이메틸설파이드	0.003	0.031	6	48	40	3	3	ı	35
11	다이메틸다이설파이드	0.0022	0.010	18	47	35	_	_	ı	17
	아세트알데하이드	0.0015	0.021	_	_	100	_	_	1	10
알 데	프로피온알데하이드	0.001	0.004	25	50	25	_	_	-	4
하 이	뷰틸알데하이드	0.00067	0.016	10	10	80	_	_	ı	10
드류	n-발레르알데하이드	0.00041	0.020	_	_	100	_	_	-	1
	i-발레르알데하이드	0.0001	_	_	_	_	_	_	-	_

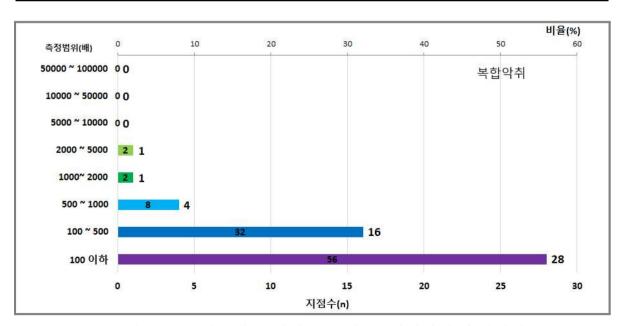
<표 3-27> 계 속

구 분		최소감지농도	평균	비율(%)						시료수
		(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	스타이렌	0.035	0.015	50	-	50	-	-	-	10
	톨루엔	0.33	0.077	20	10	40	30	-	-	10
V	자일렌	0.16	0.020	30	10	60	_	-	-	10
0 C S	메틸에틸케톤	0.44	0.007	33	22	45	_	-	-	9
류	메틸아이소뷰틸케톤	0.17	0.007	50	-	50	-	-	-	10
	뷰틸아세테이트	0.008	0.016	44	_	56	_	-	-	9
	i-뷰틸알코올	0.011	0.016	50	_	50	_	-	-	8
	프로피온산	0.0057	-	_	_	-	_	-	-	-
지 방	n−뷰틸산	0.00019	0.081	_		100	_		-	1
산 류	n-발레르산	0.000037	_	_	_	_	_	_	_	
	i-발레르산	0.000078	_	_	_	_	_	_	_	

<그림 3-24> 탈수시설(탈수기실) 지정악취물질 기여도

🔘 한국환경광단

라. 탈수시설(케이크호퍼실)

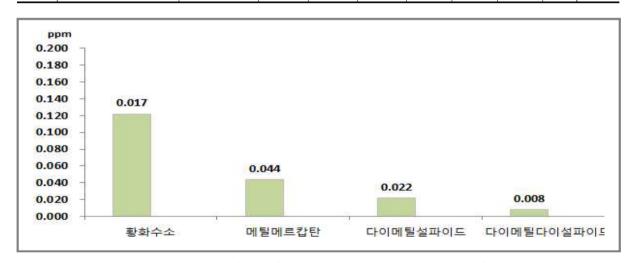

탈수시설(케이크호퍼실)은 탈수케이크를 외부반출 전 적재함(호퍼)에 일시 보관하는 시설이며, 주요 측정지점은 탈수케이크 적재함 주변 및 실내공간이다.

(1) 복합악취

탈수시설(케이크호퍼실)에서 발생하는 복합악취 측정범위는 100배 이하 56%, $100\sim500$ 배 32%, $500\sim1,000$ 배 8%순으로 나타났으며, 500배 이하가 88%로 높은 비율을 보이고 있다.

<표 3-28> 탈수시설(케이크호퍼실) 복합악취 측정범위

복합악취(총 시료수 : 50개)								
측정범위(배)	비율(%)	시료수(개)						
5,000 초과	_	-						
2,000 ~ 5,000	2	1						
1,000 ~ 2,000	2	1						
500 ~ 1,000	8	4						
100 ~ 500	32	16						
100 이하	56	28						



<그림 3-25> 탈수시설(케이크 호퍼실) 복합악취 측정범위

지정악취물질 중 대부분 황화합물류를 측정하였으며, 항목별 평균 농도는 황화수소 0.122ppm, 메틸메르캅탄 0.044ppm순으로 나타났다.

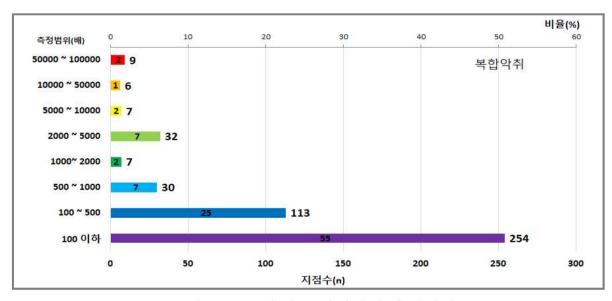
<표 3-29> 탈수시설(케이크호퍼실) 지정악취물질 농도 측정범위

구 분		최소감지농도 평균		비율(%)						시료수
		(mqq)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
황화	황화수소	0.00041	0.122	_	58	14	14	14	-	14
	메틸메르캅탄	0.00007	0.044	_	20	60	20	_	-	10
한 돼 마	다이메틸설파이드	0.003	0.022	6	32	56	6	-	-	16
	다이메틸다이설파이드	0.0022	0.008	8	50	42	-	_	-	12

<그림 3-26> 탈수시설(케이크 호퍼실) 황화합물류 평균 농도

3.3.4 악취방지시설

폐수처리시설의 처리공정에서 발생하는 악취를 포집·처리하는 시설로, 주요 악취방지시설은 미생물에 의한 방식(바이오 필터), 수세정방식, 약액세정방식 등이 설치되어 운영 중에 있다.

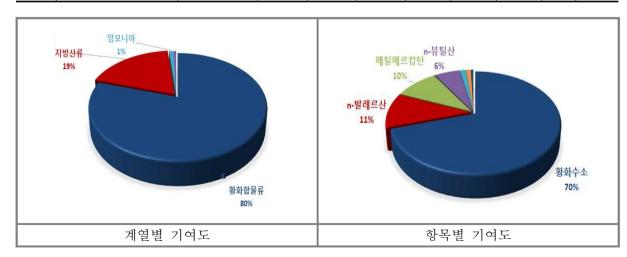

가. 유입구

(1) 복합악취

유입구에서 발생하는 복합악취 측정범위는 100배 이하 55%, 100~500배 25%로 500배 이하가 80%로 높은 비율을 차지하고 있으며, 500~1,000배 10%, 2,000~5,000배 9%순이고 5,000배를 초과하는 경우는 4%로 나타났다.

<표 3-30> 유입구 복합악취 측정범위

복합악취(총 시료수 : 458개)								
측정범위(배)	비율(%)	시료수(개)						
5,000 초과	4	22						
2,000 ~ 5,000	7	32						
1,000 ~ 2,000	2	7						
500 ~ 1,000	7	30						
100 ~ 500	25	113						
100 이하	55	254						



<그림 3-27> 유입구 복합악취 측정범위

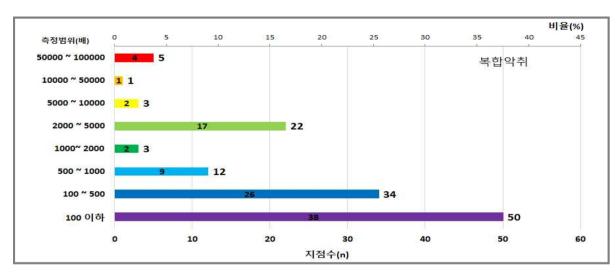
유입구에서 발생하는 지정악취물질 계열별 기여도는 황화합물류가 80%, 지방산류가 19%를 차지하며, 항목별 기여도는 황화수소 70%, n-발레르산 11%, 메틸메르캅탄 10%순으로 나타났다.

<표 3-31> 유입구 지정악취물질 농도 및 측정범위

		최소감지농도	평균			비율(%)			1 1- 117
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	
	암모니아	1.5	0.627	26	-	29	29	16	-	91
	트라이메틸아민	0.000032	0.014	50	38	4	8	_	1	26
황	황화수소	0.00041	12.3	3	9	32	19	14	23	197
화 합	메틸메르캅탄	0.00007	0.298	3	21	55	13	6	2	129
물	다이메틸설파이드	0.003	0.135	8	30	37	15	10	-	144
류	다이메틸다이설파이드	0.0022	0.074	10	39	39	7	5	-	88
알	아세트알데하이드	0.0015	0.033	1	3	91	5	_	_	134
데	프로피온알데하이드	0.001	0.013	4	21	75	_	_	_	80
하 이	뷰틸알데하이드	0.00067	0.019	_	5	95	_	_	_	120
	n-발레르알데하이드	0.00041	0.015	_	17	80	3	_	-	30
ㅡ 류	i-발레르알데하이드	0.0001	0.013	18	_	82	_	_	_	11
	스타이렌	0.035	0.065	43	6	46	3	_	ı	119
V	톨루엔	0.33	0.156	15	_	62	16	5	2	133
Ο	자일렌	0.16	0.059	42	4	48	4	2	ı	132
С	메틸에틸케톤	0.44	0.011	31	9	60	_	_	_	121
S	메틸아이소뷰틸케톤	0.17	0.004	66	4	30	ı	_	ı	126
류	뷰틸아세테이트	0.008	0.012	42	7	49	2	_	ı	102
	i-뷰틸알코올	0.011	0.019	40	1	58	1	_	ı	82
지	프로피온산	0.0057	1.445	_	_	29	43	10	18	21
방	n-뷰틸산	0.00019	0.471	_		48	30	13	9	23
산	n-발레르산	0.000037	0.174	_	_	73	9	18	_	11
류	i-발레르산	0.000078	0.049	_	_	100	_	_	_	5

<그림 3-28> 유입구 지정악취물질 기여도

🔘 한국환경공단

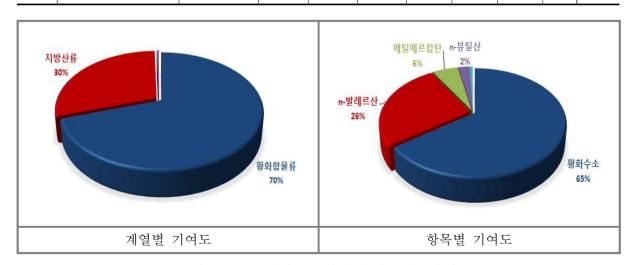

나. 배출구

(1) 복합악취

배출구에서 발생하는 복합악취 측정범위는 100배 이하 38%, 100~500배 26%로 500배 이하가 64%를 차지하고 2,000~5,000배 17%, 500~1,000배 9% 순이고, 5,000배를 초과하는 경우는 8%로 나타났다.

<표 3-32> 배출구 복합악취 측정범위

복합악취(총 시료수 : 130개)								
측정범위(배)	비율(%)	시료수(개)						
 5,000 초과	8	9						
2,000 ~ 5,000	17	22						
1,000 ~ 2,000	2	3						
500 ~ 1,000	9	12						
100 ~ 500	26	34						
100 이하	38	50						


<그림 3-29> 배출구 복합악취 측정범위

(2) 지정악취물질

배출구에서 발생하는 지정악취물질 계열별 기여도는 황화합물류가 70%, 지방산류가 30%를 차지하며, 항목별 기여도는 황화수소 65%, n-발레르산 26%, 메틸메르캅탄 6%순으로 나타났다.

<표 3-33> 배출구 지정악취물질 농도 및 측정범위

		최소감지농도	평균		비율(%)					시료수
구 분 		(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.325	39	_	24	27	7	3	67
	트라이메틸아민	0.000032	0.002	38	54	8	_	_	_	13
황	황화수소	0.00041	11.7	1	10	34	16	11	28	106
화 합	메틸메르캅탄	0.00007	0.169	3	16	57	15	7	2	75
물	다이메틸설파이드	0.003	0.110	1	33	42	17	7	_	76
류	다이메틸다이설파이드	0.0022	0.050	3	41	48	5	3	_	37
알	아세트알데하이드	0.0015	0.032	3	3	89	5	_	_	120
데	프로피온알데하이드	0.001	0.012	5	22	73	-	-	_	78
하 이	뷰틸알데하이드	0.00067	0.019	2	12	86	-	-	-	111
⊑	n-발레르알데하이드	0.00041	0.007	6	29	65	_	-	-	17
류	i-발레르알데하이드	0.0001	0.012	17	-	83	-	-	-	6
	스타이렌	0.035	0.034	41	5	50	2	2	_	105
V	톨루엔	0.33	0.103	18	2	60	18	2	_	121
V O	자일렌	0.16	0.025	42	3	49	6	_	_	121
С	메틸에틸케톤	0.44	0.011	32	5	63	_	_	-	110
S 류	메틸아이소뷰틸케톤	0.17	0.003	70	5	25	_	_	-	111
T	뷰틸아세테이트	0.008	0.009	42	7	51	_	_	_	82
	i-뷰틸알코올	0.011	0.014	38	3	57	2	-	_	65
 	프로피온산	0.0057	0.922	_	13	25	38	13	11	8
시 방	n−뷰틸산	0.00019	0.185	-	-	45	42	13	_	24
산 류	n-발레르산	0.000037	0.429	-	_	33	_	67	_	3
ਜ	i-발레르산	0.000078	0.028	-	-	100	-	_	-	1

<그림 3-30> 배출구 지정악취물질 기여도

○ 한국환경광단

3.4 문제점 및 개선방안

가. 협잡물 저장박스 공간 탈취후드 개선

협잡물을 일시 저장하는 협잡물박스와 상부 공간탈취후드와의 이격 거리가 커악취포집효율이 저하되는 구조로 저장박스 주변을 밀폐구조(비닐커버 등)로 개선하여 포집효율을 극대화하도록 한다.

<그림 3-31> 협잡물 저장박스 공간 탈취후드 개선

나. 침사지 수로 밀폐 및 악취포집설비 신설

침사지 수로와 스크린이 개방형 구조로 설치되어 있고 악취포집설비가 설치되어 있지 않아 유입폐수에서 발생하는 악취가 주변으로 확산되고 있는 실정으로, 침사지 수로 상부를 밀폐하고 악취포집설비를 설치하여 악취처리가 필요하다.

<그림 3-32> 침사지 수로 밀폐 및 악취포집설비 신설

다. 가압부상시설 주변 구획화 및 악취포집설비 개선

가압부상시설의 응집혼화조에 악취포집설비가 설치되어 있으나, 응집혼화조 및 가압부상조가 상부 개방형으로 설치되어 있어 발생하는 악취가 작업자에게 영향을 미치고 있으므로 밀폐 시설물을 설치하고 상부에 악취포집설비를 설치하여 작업 용이성 보장 및 작업자 보호, 악취포집효율을 극대화하도록 한다.

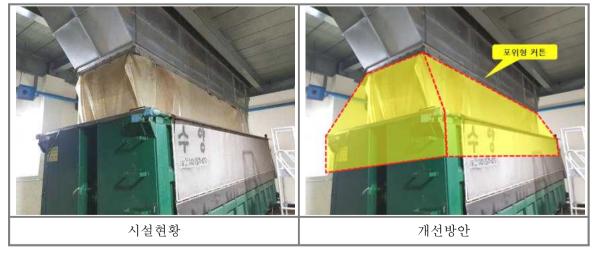
<그림 3-33> 가압부상시설 주변 구획화 및 악취포집설비 개선

라. 악취포집풍량 조절용 댐퍼 개선

악취포집풍량 조절용 댐퍼가 고농도 부식성 가스(주로 H_2S)에 의해 부식되어 파공 및 조정 불량이 발생하여 포집유량 밸런스 조정이 어려운 상태이다. 따라서 내구성 및 조정이 용이한 STS 재질의 웜기어 핸들타입 댐퍼로 개선이 요구된다.

<그림 3-34> 악취포집풍량 조절용 댐퍼 개선

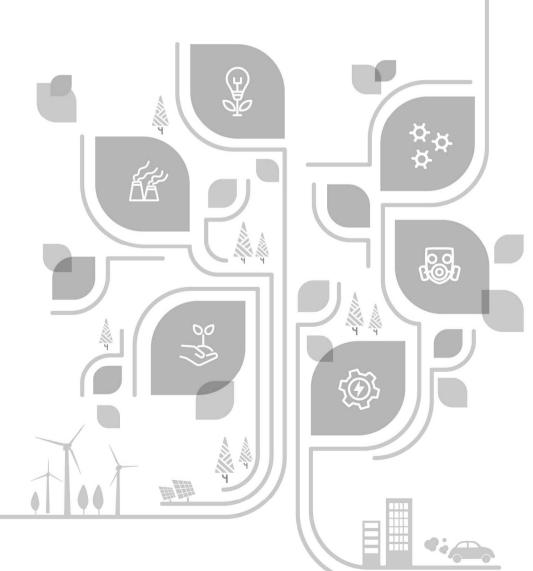
마. 탈수기 구획화 및 악취포집설비 개선


필터프레스형 탈수기는 시설 내부에 개방된 형태로 운영되고 있어 탈수과정에서 발생하는 악취가 시설 내부로 확산되고 있다. 따라서 필터프레스 운영에 지장이 없는 범위에서 공간을 구획화하여 악취포집 효율 향상 및 악취확산 방지, 설비 점검 용이성을 고려한 포집설비의 설치가 요구된다.

<그림 3-35> 탈수기 구획화 및 악취포집설비 개선

바. 탈수케잌 암롤박스 악취포집설비 개선

탈수케잌은 암롤박스 상부로 투입되나 일부 공간이 개방되어 있어 포위형 커튼을 적용하여 암롤박스 반출이 용이하도록 지퍼(Zipper) 또는 벨크로(Velcro)를 갖춘 천 또는 비닐 재질로 제작하여 악취확산 방지가 요구된다.



<그림 3-36> 탈수케잌 암롤박스 악취포집설비 개선

제4장

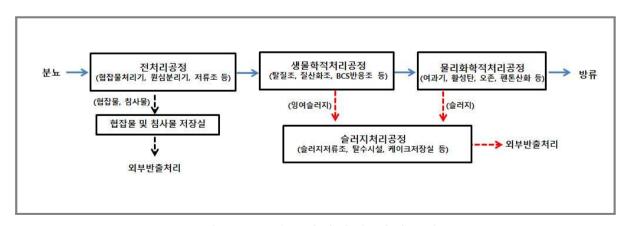
분뇨처리시설

- 4.1 현황
- 4.2 전체 악취물질 측정·분석
- 4.3 발생원별 악취물질 측정·분석
- 4.4 문제점 및 개선방안

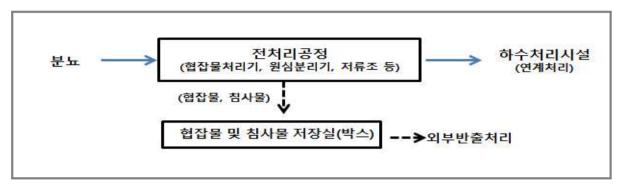
제4장 분뇨처리시설

4.1 현황

4.1.1 개요


분뇨처리시설에 대한 사례집 자료는 2014년~2018년도에 악취기술진단을 실시했던 117개 처리시설의 악취물질 측정·분석 결과를 기초로 작성하였다.

<표 4-1> 처리공정별 악취물질 시료채취 현황


처리 공정별				전처리공정 생물학적처리공					처리공정		
시설수 (개소)		료합계 (개)	소계	반일	입동	전처리시설 (협잡물처리기 등)	분	르뇨저류조	탈질	조	질산화조
117	1,6	83	870	7	'6	454		340	77		52
	슬러지처리공정 악취방지시설								설		
소계			슬러지저류조	러지저류조		탈수시설	유입		구		배출구
189			9			180		264		231	

4.1.2 분뇨처리공법 현황

하수처리구역 외의 구역에서 발생하는 정화조 오니 및 분뇨를 수거하여 분뇨처리시설로 운반·처리하는 방식이며, 처리방식은 생물학적처리방법인 액상부식법, B3공법 등이 있으나, 반입된 분뇨를 전처리 후 하수처리시설로 연계처리하는 방식이 증가 추세이다.

<그림 4-1> 분뇨처리시설 처리공정도

<그림 4-2> 분뇨전처리 후 연계처리공정도

4.1.3 주요 처리공정별 악취측정 지점 현황

악취측정 지점의 명칭은 처리시설 및 처리공법에 따라 상이하므로 공정별로 유사한 처리기능을 수행하는 지점으로 통합 분류하였으며, 주요 처리공정별 악취측정 지점은 아래와 같다.

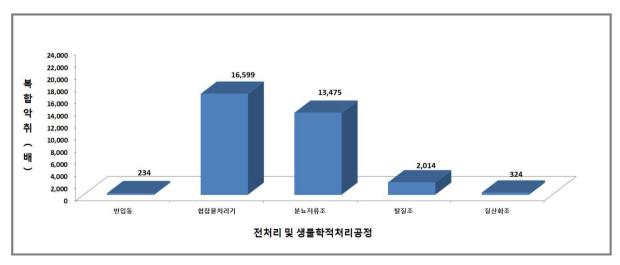
<표 4-2> 처리공정별 주요 악취측정 지점

	구 분	70 \$NIN
처리공정	발생원	주요 측정지점
	반입동	반입동 실내공간, 전처리시설 주변
전처리공정	전처리시설 (협잡물처리기 등)	전처리시설(협잡물처리기 등) 내부 및 주변, 협잡물 콘베이어
	분뇨저류조	분뇨저류조 내부
생물학적 처리공정	생물반응조	탈질조, 질산화조, BCS반응조 등
슬러지	탈수시설	탈수기 주변, 탈수케이크 저장시설, 탈수기실 실내공간
처리공정	슬러지저류조	슬러지저류조 내부
악취방지시설		유입구, 배출구

4.2 전체 악취물질 측정·분석

처리시설 분류는 전처리공정(반입동, 전처리시설, 분뇨저류조), 생물학적처리공정 [생물반응조(탈질조, 질산화조)], 슬러지처리공정(탈수시설, 슬러지저류조), 악취 방지시설(유입구, 배출구)로 구분하였다.

악취물질 측정·분석 결과의 통계값은 복합악취의 희석배수 및 지정악취물질의 농도를 산술평균을 사용하여 악취농도로 제시하였으며, 통계값 적용에 있어 불 검출된 측정값은 통계분석에서 제외하였다.


4.2.1 복합악취

가. 전처리 및 생물학적처리공정

전처리공정의 복합악취(평균치)는 전처리시설(협잡물처리기 등)이 16,599배로 상대적으로 높고 분뇨저류조 13,475배, 반입동 234배 순으로 나타났으며, 미생물을 이용한 생물학적처리공정에서는 탈질조가 2,014배로 질산화조 324배 대비 높게 나타났다.

<표 4-3> 전처리 및 생물학적처리	공정 평균 복합악취	1
----------------------	------------	---

		전처리공정	생물학적처리공정		
구 분 	반입동 전처리시설 (협잡물처리기 등)		분뇨저류조	탈질조	질산화조
평균 복합악취(배)	234	16,599	13,475	2,014	324
전체 시료수(개)	76	454	340	77	52


<그림 4-3> 전처리 및 생물학적처리공정 평균 복합악취

나. 슬러지처리공정 및 악취방지시설

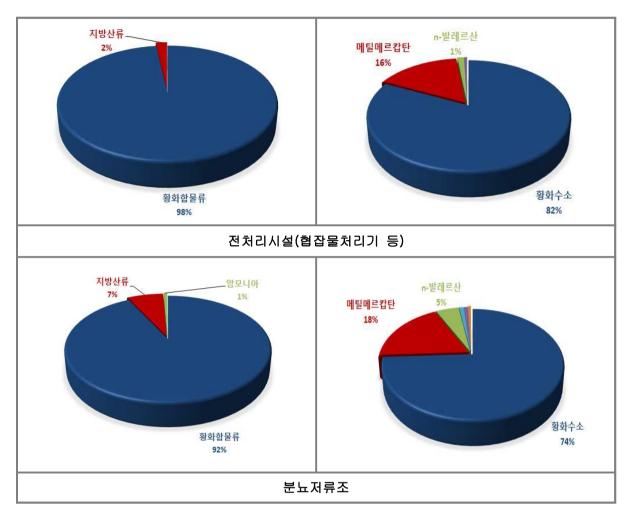
슬러지처리공정에서의 복합악취는 슬러지저류조에서 11,213배로 상대적으로 높게 발생하고 탈수시설은 382배로 나타났으며, 악취방지시설에서는 유입구 5,215배, 배출구 1,990배로 나타났다.

<표 4-4> 슬러지처리공정 및 악취방지시설 평균 복합악취

	슬러지치	려리공정	악취방지시설		
구 분	슬러지저류조	탈수시설	유입구	배출구	
평균 복합악취(배)	11,213	382	5,215	1,990	
전체 시료수(개)	9	180	264	231	

<그림 4-4> 슬러지처리공정 및 악취방지시설 평균 복합악취

4.2.2 지정악취물질


가. 전처리공정

전처리공정(반입동, 전처리시설, 분뇨저류조)의 계열별 기여도는 황화합물류가 높은 상태이며, 황화합물류 중 황화수소, 지방산류 중 n-발레르산의 기여도가 높은 것으로 나타났다.

<표 4-5> 전처리공정 지정악취물질 평균 농도

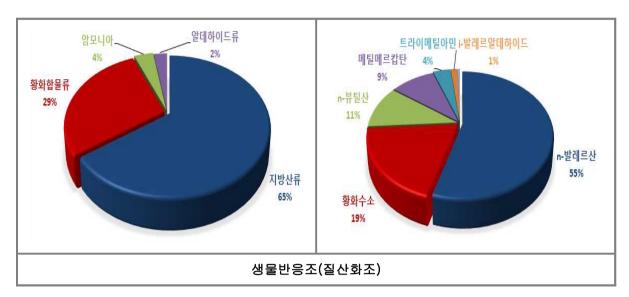
	구 분		전처리공정(ppm)								
	지정악취물질(ppn	n)		반입동			^던 처리시설 물 <mark>물</mark> 처리기	_	듄	보고자류	조
	항목	최소 감지농도	평균	최대	시료수 (개)	평균	최대	시료수 (개)	평균	최대	시료수 (개)
	암모니아	1.5	_	_	_	4.873	72.3	39	2.567 42.9		104
	트라이메틸아민	0.000032	_	-	_	0.002	0.008	9	0.025	0.485	24
 황	황화수소	0.00041	0.472	3.769	18	126.0	7,592	291	35.0	768.7	302
화 합	메틸메르캅탄	0.00007	0.022	0.076	7	4.208	426.8	163	1.482	28.1	205
물	다이메틸설파이드	0.003	0.008	0.038	7	0.336	21.3	114	0.128	4.123	134
류	다이메틸다이설파이드	0.0022	0.002	0.002	1	0.151	4.921	72	0.123	3.138	73
알	아세트알데하이드	0.0015	_	_	_	0.063	1.148	43	0.073	3.065	133
데	프로피온알데하이드	0.001	_	_	_	0.019	0.271	31	0.010	0.048	81
하 이	뷰틸알데하이드	0.00067	_	_	_	0.022	0.143	36	0.027	0.380	113
드류	n-발레르알데하이드	0.00041	_	-	_	0.019	0.183	14	0.012	0.123	23
77	i-발레르알데하이드	0.0001	_	-	-	0.025	0.064	5	0.023	0.151	16
	스타이렌	0.035	_	_	_	0.007	0.040	43	0.009	0.120	130
	톨루엔	0.33	_	-	_	2.962	83.350	45	0.681	9.000	139
V O	자일렌	0.16	_	-	-	0.120	2.520	45	0.149	3.350	138
С	메틸에틸케톤	0.44	_	-	-	0.017	0.080	44	0.251	23.390	130
S 류	메틸아이소뷰틸케톤	0.17	_	-	-	0.005	0.020	40	0.008	0.150	123
	뷰틸아세테이트	0.008	-	-	-	0.025	0.160	24	0.022	0.640	77
	i-뷰틸알코올	0.011	_	-	-	0.011	0.113	21	0.017	0.430	82
	프로피온산	0.0057	_	-	-	0.266	0.474	4	0.355	1.788	24
지 방 산 류	n-뷰틸산	0.00019	-	-	-	0.390	0.844	10	0.224	1.984	31
	n-발레르산	0.000037	_	-		0.173	0.546	7	0.210	0.717	10
	i-발레르산	0.000078	_	-	-	0.047	0.077	2	0.072	0.163	5

주) 반입동은 실내공간으로 주요 측정항목이 황화합물류임.

<그림 4-5> 전처리공정 지정악취물질 계열별 및 항목별 기여도

나. 생물학적처리공정

생물학적처리공정 [생물반응조(탈질조), 생물반응조(질산화조)]의 계열별 기여도는 황화합물류 및 지방산류가 대부분을 차지하며, 탈질조는 황화수소, 질산화조는 n-발레르산의 기여도가 높은 것으로 나타났다.


<표 4-6> 생물학적처리공정 지정악취물질 농도

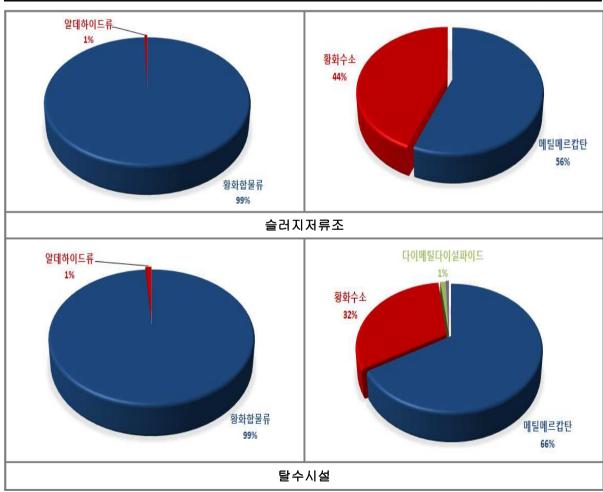
구 분			생물학적처리공정(ppm)								
지정악취물질(pp	생물	라 응조(탈질	·조)	생물반응조(질산화조)							
항목	최소 감지농도	평균 최대		시료수 (개)	평균 최대		시료수 (개)				
암모니아	1.5	0.124	0.400	12	0.152	0.700	12				
트라이메틸아민	0.000032	0.009	0.031	4	0.009	0.009	1				

<표 4-6> 계 속

	구 분				생물학적	처리공정			
	지정악취물질(pr	om)	생들	을반응조(탈질	일조)	생물반응조(질산화조)			
	항목	최소 감지농도	평균	최대	시료수 (개)	평균	최대	시료수 (개)	
황	황화수소	0.00041	3.628	88.9	43	0.588	4.791	16	
화 합	메틸메르캅탄	0.00007	0.158	0.926	16	0.049	0.317	8	
물	다이메틸설파이드	0.003	0.024	0.287	30	0.038	0.374	21	
류	다이메틸다이설파이드	0.0022	0.013	0.066	10	0.005	0.011	9	
알	아세트알데하이드	0.0015	0.038	0.094	18	0.044	0.115	15	
데	프로피온알데하이드	0.001	0.012	0.034	11	0.012	0.034	10	
하 이	뷰틸알데하이드	0.00067	0.021	0.092	16	0.017	0.056	14	
<u>_</u>	n-발레르알데하이드	0.00041	0.007	0.017	5	0.008	0.016	5	
류	i-발레르알데하이드	0.0001	0.045	0.096	4	0.011	0.026	3	
	스타이렌	0.035	0.005	0.020	17	0.004	0.014	14	
	톨루엔	0.33	0.177	1.539	18	0.049	0.260	16	
V	자일렌	0.16	0.024	0.110	18	0.014	0.070	16	
С	메틸에틸케톤	0.44	0.022	0.120	15	0.010	0.030	13	
S 류	메틸아이소뷰틸케톤	0.17	0.002	0.011	16	0.002	0.010	14	
	뷰틸아세테이트	0.008	0.011	0.021	7	0.008	0.019	6	
	i-뷰틸알코올	0.011	0.010	0.039	9	0.013	0.054	7	
	프로피온산	0.0057	0.095	0.155	2	0.202	0.223	2	
지 방	n−뷰틸산	0.00019	0.093	0.158	3	0.155	0.186	3	
산 류	n-발레르산	0.000037	0.135	0.135	1	0.150	0.153	2	
π 	i-발레르산	0.000078	-	-	_	-	-	-	

<그림 4-6> 생물학적처리공정 지정악취물질 계열별 및 항목별 기여도

다. 슬러지처리공정


슬러지처리공정의 계열별 기여도는 대부분 황화합물류가 높은 비율을 차지하고 있으며, 항목별 기여도는 슬러지저류조 및 탈수시설은 메틸메르캅탄의 기여도가 높게 나타났다.

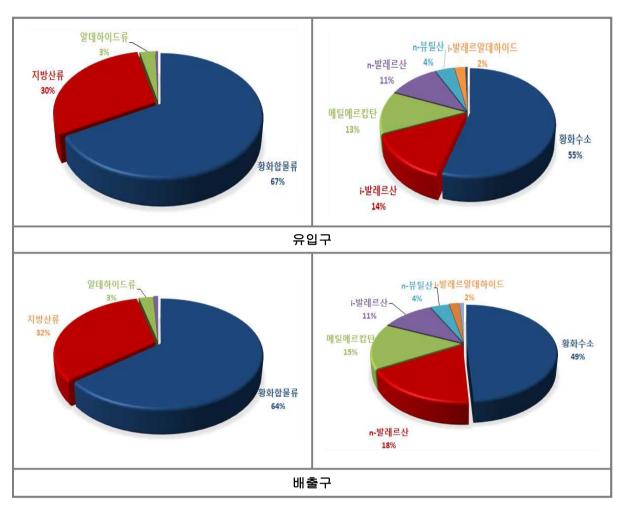
<표 4-7> 슬러지처리공정 지정악취물질 농도

	구 분				슬러지처리	공정(ppm))		
	지정악취물질(pr	om)	ŧ	슬러지저류조	<u> </u>	탈수시설			
	항목	최소 감지농도	평균	최대	시료수 (개)	평균	최대	시료수 (개)	
암모니아		1.5	0.333	0.600	3	0.067	0.100	3	
트라이메틸아민		0.000032	_	_	_	-	_	_	
 황	황화수소	0.00041	20.7	103.3	5	0.503	11.8	51	
화 합	메틸메르캅탄	0.00007	4.508	8.995	2	0.179	2.667	26	
물	다이메틸설파이드	0.003	0.018	0.045	3	0.039	0.447	46	
류	다이메틸다이설파이드	0.0022	_	_	_	0.098	1.253	24	
O.F	아세트알데하이드	0.0015	0.770	3.065	4	0.023	0.042	4	
알 데	프로피온알데하이드	0.001	0.037	0.037	1	0.004	0.007	2	
하 이	뷰틸알데하이드	0.00067	0.007	0.012	3	0.017	0.023	2	
드 류	n-발레르알데하이드	0.00041	_	_	_	_	-	_	
ਜ	i-발레르알데하이드	0.0001	0.002	0.002	1	_	0.000	-	

<표 4-7> 계 속

	구 분			슬러지처리공정(ppm)								
	지정악취물질(pr	om)	ŧ	슬러지저류조	<u> </u>	탈수시설						
	항목	최소 감지농도	평균	최대	시료수 (개)	평균	최대	시료수 (개)				
	스타이렌	0.035	0.011	0.020	4	0.005	0.013	4				
	톨루엔	0.33	0.477	1.600	4	0.036	0.130	4				
V O C	자일렌	0.16	0.030	0.050	4	0.018	0.030	4				
	메틸에틸케톤	0.44	0.308	1.190	4	0.005	0.014	4				
S 류	메틸아이소뷰틸케톤	0.17	0.007	0.010	4	0.003	0.009	4				
,,	뷰틸아세테이트	0.008	0.024	0.030	2	0.009	0.018	2				
	i-뷰틸알코올	0.011	0.152	0.430	3	0.020	0.043	3				
	프로피온산	0.0057	0.132	0.217	2	_	_	_				
방 산	n−뷰틸산	0.00019	0.067	0.122	2	_	_	_				
	n-발레르산	0.000037	_	0.000	_	_	_	_				
류	i-발레르산	0.000078	_	0.000	_	_	_	_				

<그림 4-7> 슬러지처리공정 지정악취물질 계열별 및 항목별 기여도


라. 악취방지시설

악취방지시설로 유입되는 주요 지정악취물질의 기여도는 황화합물류 및 지방 산류가 높은 비율을 차지하며, 항목별 기여도는 황화수소가 상대적으로 높게 나타났다.

<표 4-8> 악취방지시설 지정악취물질 농도

	구 분				악취	방지시설(ppm)		
	지정악취물질(pp	m)		유입구			배출구		처리효율
	항목	최소 감지농도	평균	최대	시료수 (개)	평균	최대	시료수 (개)	(평균,%)
	암모니아	1.5	2.092	55.2	165	1.813	59.4	123	13
	트라이메틸아민	0.000032	0.005	0.062	46	0.006	0.075	29	_
황	황화수소	0.00041	7.183	236.0	278	4.194	174.7	205	42
0 화 합	메틸메르캅탄	0.00007	0.284	2.183	179	0.223	2.347	139	21
물	다이메틸설파이드	0.003	0.108	1.739	100	0.051	0.435	110	53
류	다이메틸다이설파이드	0.0022	0.209	2.749	60	0.048	0.600	70	77
	아세트알데하이드	0.0015	0.059	1.287	211	0.055	1.042	172	7
알 데	프로피온알데하이드	0.001	0.011	0.128	122	0.011	0.071	94	_
하 이	뷰틸알데하이드	0.00067	0.047	1.656	171	0.033	1.094	140	30
드류	n-발레르알데하이드	0.00041	0.021	0.242	37	0.008	0.046	29	62
,,	i-발레르알데하이드	0.0001	0.079	1.355	34	0.046	0.745	24	42
	스타이렌	0.035	0.019	0.860	203	0.017	0.860	164	11
	톨루엔	0.33	0.337	3.840	217	0.290	3.690	179	14
V	자일렌	0.16	0.070	2.160	216	0.047	0.835	178	33
O C	메틸에틸케톤	0.44	0.241	15.600	201	0.129	10.020	150	46
S 류	메틸아이소뷰틸케톤	0.17	0.006	0.220	201	0.004	0.092	160	33
	뷰틸아세테이트	0.008	0.010	0.061	148	0.018	0.760	108	_
	i-뷰틸알코올	0.011	0.011	0.080	125	0.012	0.170	79	-
	프로피온산	0.0057	0.525	3.104	15	0.183	0.451	9	65
지 방	n−뷰틸산	0.00019	0.264	2.980	35	0.159	0.678	26	40
산 류	n-발레르산	0.000037	0.134	0.790	23	0.136	0.321	10	_
, ,	i-발레르산	0.000078	0.355	1.493	5	0.178	0.274	3	50

🔘 한국환경공단

<그림 4-8> 악취방지시설 지정악취물질 계열별 및 항목별 기여도

4.2.3 총괄(복합악취 및 지정악취물질)

분뇨처리공정에서의 복합악취는 전처리공정의 전처리시설(협잡물처리기 등) 및 분뇨저류조에서 상대적으로 높게 발생하고 있으며, 반입동, 생물반응조(질산화조) 및 탈수시설에서 낮은 복합악취를 보이고 있다.

지정악취물질은 계열별 기여도는 황화합물류 및 지방산류가 높은 비율을 차지하고 있으며, 항목별 기여도는 황화수소, 메틸메르캅탄, n-발레르산 등이 높게나타났다.

<표 4-9> 처리공정별 복합악취 및 주요 지정악취물질 기여도

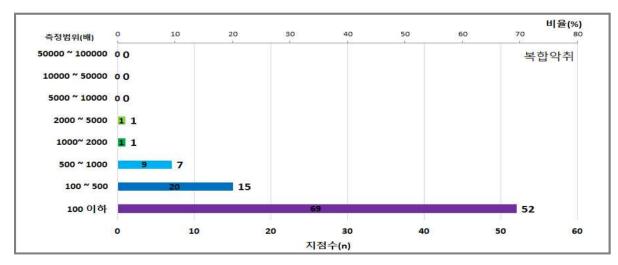
		복합악취(평균)	주요 지정악취	물질 기여도(%)
	구 분	(84)	계열별	항목별
	반입동	234	_	-
전처리공정	전처리시설 (협잡물처리기 등)	16,599	황화합물류 98%, 지방산류 2%	황화수소 82%, 메틸메르캅탄 16%
	분뇨저류조	13,457	황화합물류 92%, 지방산류 7%	황화수소 74%, n-발레르산 5%
생물학적	생물반응조 (탈질조)	2,014	황화합물류 69%, 지방산류 26%	황화수소 55%, n-발레르산 23%
처리공정	생물반응조 (질산화조)	324	지방산류 65%, 황화합물류 29%	n-발레르산 55%, 황화수소 19%
슬러지	슬러지저류조	11,213	황화합물류 99%	메틸메르캅탄 56%, 황화수소 44%
처리공정	탈수시설	382	황화합물류 99%	메틸메르캅탄 66%, 황화수소 32%
악취	유입구	5,215	황화합물류 67%, 지방산류 30%	황화수소 55%, i-발레르산 14%
방지시설	배출구	1,990	황화합물류 64%, 지방산류 32%	황화수소 49%, n-발레르산 18%

4.3 발생원별 악취물질 측정 분석

4.3.1 전처리공정

전처리공정은 분뇨 중에 포함되어 있는 협잡물, 모래 및 비부패성 무기질 입자를 제거할 목적으로 설치된 시설이다.

가. 반입동

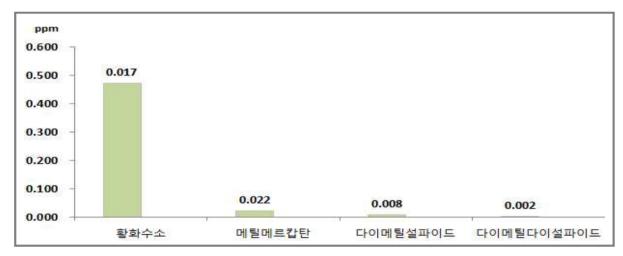

운반차량에 의해 처리시설로 반입된 분뇨는 반입동(반입시설)내의 협잡물처리기로 이송·처리하며, 주요 측정지점은 전처리시설 주변 및 실내공간이다.

(1) 복합악취

반입동에서 발생하는 복합악취 측정범위는 100배 이하 69%, 100~500배가 20%로 높은 비율을 차지하고, 500배를 초과하는 비율은 11%로 나타났다.

<표 4-10> 반입동 복합악취 측정범위

	복합악취(총 시료수 : 76개)										
측정범위(배)	비율(%)	시료수(개)									
5,000 초과	-	-									
2,000 ~ 5,000	1	1									
1,000 ~ 2,000	1	1									
500 ~ 1,000	9	7									
100 ~ 500	20	15									
100 이하	69	52									


<그림 4-9> 반입동 복합악취 측정범위

(2) 지정악취물질

협잡물반출실은 지정악취물질 중 대부분 황화합물류를 측정하였으며, 항목별 평균농도는 황화수소 0.472ppm, 메틸메르캅탄 0.022ppm, 다이메틸설파이드 0.008ppm, 다이메틸다이설파이드 0.002ppm순으로 나타났다.

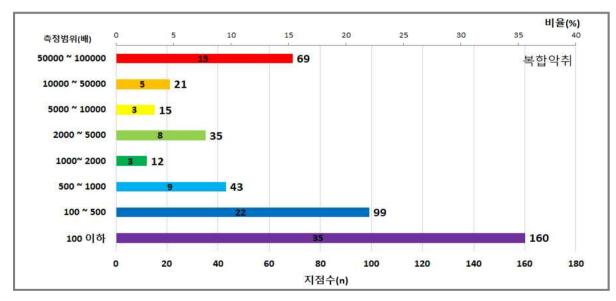
<丑 4	1-11>	반입동	지정악취물질	농도	즉정범위
------	-------	-----	--------	----	------

		최소감지농도	평균 (ppm)			시료수				
	구 분	(ppm)		0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	황화수소	0.00041	0.472	_	22	33	28	6	11	18
황 화	메틸메르캅탄	0.00007	0.022	-	29	71	-	-	-	7
합 물 류	다이메틸설파이드	0.003	0.008	14	72	14	-	-	-	7
,,	다이메틸다이설파이드	0.0022	0.002	_	100	_	-	-	-	1

<그림 4-10> 반입동 황화합물류 평균 농도

나. 전처리시설(협잡물처리기 등)

전처리시설(협잡물처리기 등)은 분뇨 중에 포함되어 있는 협잡물, 모래 및 비부패성 무기질 입자를 제거할 목적으로 설치된 시설이며, 주요 측정지점은 협잡물처리기 내부 및 주변이다.


(1) 복합악취

협잡물처리기에서 발생하는 복합악취 측정범위는 100배 이하 35%, 100~500

배가 22%로 높은 비율을 차지하고 500~1,000배 9%, 2,000~5,000배 8%순이며, 5,000배를 초과하는 경우는 23%인 것으로 나타났다.

<표 4-12> 전처리시설(협잡물처리기 등) 복합악취 측정범위

	복합악취(총 시료수 : 454개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	23	105
2,000 ~ 5,000	8	35
1,000 ~ 2,000	3	12
500 ~ 1,000	9	43
100 ~ 500	22	99
100 이하	35	160


<그림 4-11> 전처리시설(협잡물처리기 등) 복합악취 측정범위

(2) 지정악취물질

지정악취물질 계열별 기여도는 황화합물류 98%로 대부분을 차지하며, 항목별 기여도는 황화수소 82%, 메틸메르캅탄 16%, n-발레르산 1%순으로 나타났다.

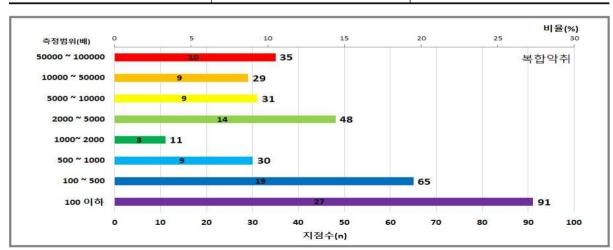
<표 4-13> 전처리시설(협잡물처리기 등) 지정악취물질 농도 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	4.873	10	_	23	31	15	21	39
	트라이메틸아민	0.000032	0.002	44	44	12	-	-	-	9
황	황화수소	0.00041	126.0	1	11	20	13	11	44	291
화 합	메틸메르캅탄	0.00007	4.208	4	15	34	15	12	20	163
물	다이메틸설파이드	0.003	0.336	5	24	56	6	5	4	114
류	다이메틸다이설파이드	0.0022	0.151	14	38	32	9	7	-	72
알	아세트알데하이드	0.0015	0.063	_	7	89	2	2	-	43
데 	프로피온알데하이드	0.001	0.019	_	35	61	4	-	_	31
하 이	뷰틸알데하이드	0.00067	0.022	_	6	91	3	-	_	36
<u></u>	n-발레르알데하이드	0.00041	0.019	14	50	29	7	-	_	14
류	i-발레르알데하이드	0.0001	0.025	_	_	100	-	-	_	5
	스타이렌	0.035	0.007	47	2	51	-	-	_	43
	톨루엔	0.33	2.962	7	_	18	29	27	19	45
V	자일렌	0.16	0.120	24	_	58	13	2	3	45
С	메틸에틸케톤	0.44	0.017	25	5	70	-	-	-	44
S 류	메틸아이소뷰틸케톤	0.17	0.005	50	3	47	-	-	_	40
77	뷰틸아세테이트	0.008	0.025	33	_	58	9	-	_	24
	i-뷰틸알코올	0.011	0.011	48	_	48	4	-	_	21
	프로피온산	0.0057	0.266	_	-	-	100	-	_	4
방	n-뷰틸산	0.00019	0.390	_	_	20	50	30	_	10
산	n−발레르산	0.000037	0.173	_	_	72	14	14	_	7
류	i−발레르산	0.000078	0.047	_	_	100	_	-	_	2

** 악취기여도(%) : $\left\{ \frac{($ 개별악취물질농도/개별악취물질의최소감지농도)}{[(개별악취물질농도/개별악취물질의최소감지농도)]의총합 $\right\} \times 100$

<그림 4-12> 전처리시설(협잡물처리기 등) 지정악취물질 기여도

다. 분뇨저류조


분뇨저류조는 협잡물처리기를 거친 반입분뇨를 일시 저류하는 시설이며, 주요 측정지점은 조 내부이다.

(1) 복합악취

분뇨저류조에서 발생하는 복합악취 측정범위는 100배 이하 27%, 100~500배가 19%, 2,000~5,000배 14%, 500~1,000배 9%순이며, 5,000배를 초과하는 경우는 28%로 높은 비율로 나타났다.

<표 4-14> 분뇨저류조 복합악취 측정범위

	복합악취(총 시료수 : 340개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	28	95
2,000 ~ 5,000	14	48
1,000 ~ 2,000	3	11
500 ~ 1,000	9	30
100 ~ 500	19	65
100 이하	27	91


<그림 4-13> 분뇨저류조 복합악취 측정범위

(2) 지정악취물질

지정악취물질 계열별 기여도는 황화합물류 92%, 지방산류 7%로 대부분을 차지하며, 항목별 기여도는 황화수소 74%, 메틸메르캅탄 5%, n-발레르산 5%순으로 나타났다.

1	1_15\	보しコミス	지정악취물질	노ㄷ	츠저버이
< 11-	4-10/	T 五 八 开 仝	시장의위품질	一 エ	5 2811

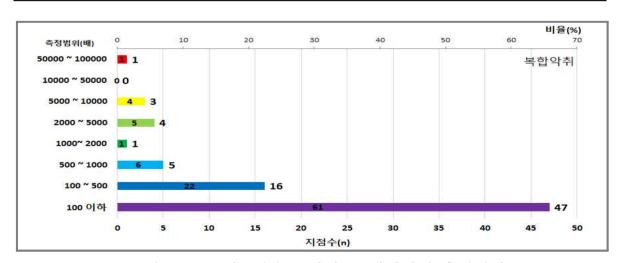
		최소감지농도	평균			비율(%)			시료수 (개)
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	
	암모니아	1.5	2.567	18	-	17	24	24	17	104
	트라이메틸아민	0.000032	0.025	42	42	12	4	_	ı	24
황	황화수소	0.00041	35.0	1	7	15	15	11	51	302
화 합	메틸메르캅탄	0.00007	1.482	3	10	28	22	18	19	205
물	다이메틸설파이드	0.003	0.128	2	28	48	16	6	-	134
류	다이메틸다이설파이드	0.0022	0.123	22	25	33	12	8	-	73
알	아세트알데하이드	0.0015	0.073	1	12	80	5	2	-	133
데 	프로피온알데하이드	0.001	0.010	2	38	60	-	-	-	81
하 이	뷰틸알데하이드	0.00067	0.027	2	7	87	4	-	_	113
<u></u>	n-발레르알데하이드	0.00041	0.012	9	39	48	4	-	-	23
류	i-발레르알데하이드	0.0001	0.023	_	13	81	6	-	_	16
	스타이렌	0.035	0.009	47	5	46	2	-	-	130
V	톨루엔	0.33	0.681	8	_	26	26	30	10	139
0	자일렌	0.16	0.149	18	1	56	17	8	-	138
С	메틸에틸케톤	0.44	0.251	21	7	60	8	4	_	130
S 류	메틸아이소뷰틸케톤	0.17	0.008	50	9	40	1	-	-	123
ਜ	뷰틸아세테이트	0.008	0.022	34	4	58	3	1	-	77
	i-뷰틸알코올	0.011	0.017	34	2	62	2	-	-	82
	프로피온산	0.0057	0.355	_	-	17	66	17	_	24
방	n-뷰틸산	0.00019	0.224	_	_	35	55	10	-	31
산	n-발레르산	0.000037	0.210	_	_	50	30	20	-	10
류 	i-발레르산	0.000078	0.072	20	_	40	40	_	-	5

<그림 4-14> 분뇨저류조 지정악취물질 기여도

4.3.2 생물학적처리공정

생물학적처리공정은 분뇨중의 Colloid성 및 용해성 유기물을 미생물에 의해 생물학적으로 제거하는 공정으로써 단위공정 중 핵심이 되는 주요 공정이다.

가. 생물반응조(탈질조)


생물반응조(탈질조)는 혐기 및 무산소 조건을 형성하여 유기물 분해 및 탈질 작용으로 처리수질을 개선하는 역할을 하며, 주요 측정지점은 조 내부이다.

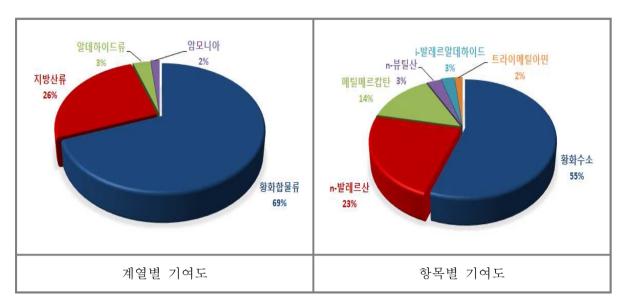
(1) 복합악취

생물반응조(탈질조)에서 발생하는 복합악취 측정범위는 100배 이하가 61%로 높은 비율을 차지하고 100~500배 22%, 500~1,000배 6%, 2,000~5,000배 5% 순이며, 5,000배를 초과하는 경우는 5%인 것으로 나타났다.

<표 4-16> 생물반응조(탈질조) 복합악취 측정범위

	복합악취(총 시료수 : 77개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	5	4
2,000 ~ 5,000	5	4
1,000 ~ 2,000	1	1
500 ~ 1,000	6	5
100 ~ 500	22	16
100 이하	61	47

<그림 4-15> 생물반응조(탈질조) 복합악취 측정범위


(2) 지정악취물질

지정악취물질 기여도는 황화합물류 69%, 지방산류 26%순이며, 황화합물류 중 황화수소가 55%, 메틸메르캅탄 14%, 지방산류 중 n-발레르산이 23%로 나타났다.

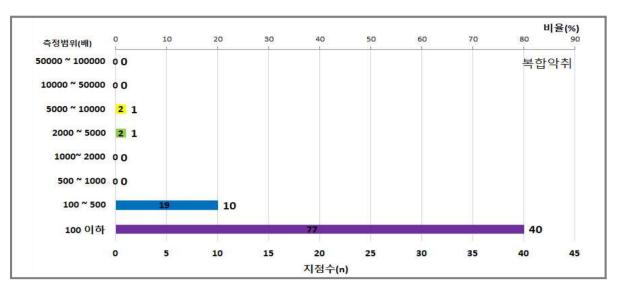
<표 4-17> 생물반응조(탈질조) 지정악취물질 농도 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.124	33	-	25	42	_	ı	12
	트라이메틸아민	0.000032	0.009	50	25	25	-	-	-	4
<u></u> 황	황화수소	0.00041	3.628	2	12	42	21	5	18	43
화	메틸메르캅탄	0.00007	0.158	-	19	55	13	13	-	16
합 물	다이메틸설파이드	0.003	0.024	3	41	53	3	-	-	30
류	다이메틸다이설파이드	0.0022	0.013	20	50	30	_	_	-	10
	아세트알데하이드	0.0015	0.038	_	11	89	_	_	_	18
알 데	프로피온알데하이드	0.001	0.012	9	18	73	_	_	_	11
하 이	뷰틸알데하이드	0.00067	0.021	-	6	94	_	-	-	16
드 류	n-발레르알데하이드	0.00041	0.007	20	20	60	_	-	-	5
71	i-발레르알데하이드	0.0001	0.045	-	-	100	-	-	-	4
	스타이렌	0.035	0.005	53	6	41	_	_	-	17
	톨루엔	0.33	0.177	22	_	44	23	11	-	18
V	자일렌	0.16	0.024	17	6	71	6	-	-	18
O C	메틸에틸케톤	0.44	0.022	20	7	66	7	-	-	15
S 류	메틸아이소뷰틸케톤	0.17	0.002	68	13	19	-	-	-	16
	뷰틸아세테이트	0.008	0.011	43	-	57	-	-	-	7
	i-뷰틸알코올	0.011	0.010	44	12	44	-	-	-	9
	프로피온산	0.0057	0.095	-	-	50	50	-	_	2
지 방	n−뷰틸산	0.00019	0.093	-	_	33	67	-	_	3
산 류	n-발레르산	0.000037	0.135	_	_	_	100	_	ı	1
	i-발레르산	0.000078	_	_	_	-	_	_	-	_

🔘 한국환경공단

<그림 4-16> 생물반응조(탈질조) 지정악취물질 기여도

나. 생물반응조(질산화조)


생물반응조(질산화조)는 호기성 미생물을 이용하여 유기물 분해 및 질산화과정을 통해 처리수질을 개선하는 역할을 하며, 주요 측정지점은 조 내부이다.

(1) 복합악취

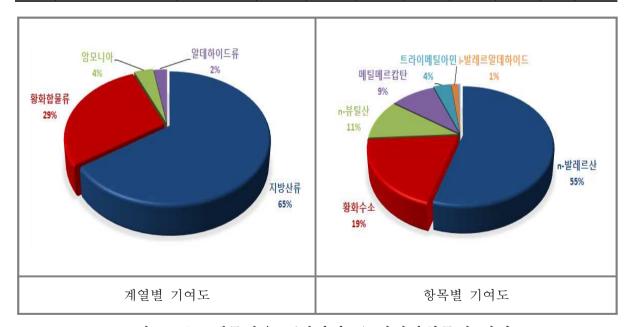
생물반응조(질산화조)에서 발생하는 복합악취 측정범위는 100배 이하 77%, $100\sim500$ 배 19%로 대부분을 차지하고 있다.

<표 4-18> 생물반응조(질산화조) 복합악취 측정범위

	복합악취(총 시료수 : 52개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	2	1
2,000 ~ 5,000	2	1
1,000 ~ 2,000	-	-
500 ~ 1,000	-	-
100 ~ 500	19	10
100 이하	77	40

<그림 4-17> 생물반응조(질산화조) 복합악취 측정범위

(2) 지정악취물질


지정악취물질 계열별 기여도는 지방산류 65%, 황화합물류 29%로 나타났으며, 항목별 기여도는 n-발레르산 55%, 황화수소 19%, n-뷰틸산 11%순으로 나타났다.

<표 4-19> 생물반응조(질산화조) 지정악취물질 농도 측정범위

		최소감지농도	평균	비율(%)						시료수
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.152	33	_	33	26	8	-	12
	트라이메틸아민	0.000032	0.009	_	_	100	-	_	_	1
<u></u> 황	황화수소	0.00041	0.588	_	44	31	6	6	13	16
10 화 합	메틸메르캅탄	0.00007	0.049	_	37	50	13	_	ı	8
5 물 류	다이메틸설파이드	0.003	0.038	_	52	38	10	_	ĺ	21
	다이메틸다이설파이드	0.0022	0.005	11	67	22	_	_	ĺ	9
	아세트알데하이드	0.0015	0.044	_	I	93	7	_	ı	15
알 데	프로피온알데하이드	0.001	0.012	10	20	70	_	_	1	10
하 이	뷰틸알데하이드	0.00067	0.017	7	21	72	_	_	-	14
이 드 류	n-발레르알데하이드	0.00041	0.008	_	20	80	_	_	_	5
	i-발레르알데하이드	0.0001	0.011	_	67	33	_	_	_	3

<표 4-19> 계 속

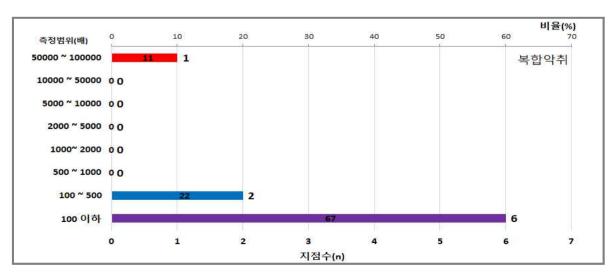
		최소감지농도	평균 (ppm)	비율(%)						시료수
	구 분	(ppm)		0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	스타이렌	0.035	0.004	64	7	29	-	-	-	14
	톨루엔	0.33	0.049	25	_	56	19	-	-	16
V	자일렌	0.16	0.014	44	6	50	-	-	-	16
0 C S	메틸에틸케톤	0.44	0.010	38	8	54	-	-	-	13
s 류	메틸아이소뷰틸케톤	0.17	0.002	71	8	21	-	0	-	14
	뷰틸아세테이트	0.008	0.008	33	_	67	-	-	-	6
	i-뷰틸알코올	0.011	0.013	43	_	57	-	-	-	7
	프로피온산	0.0057	0.202	_	_	-	100	-	-	2
지 방	n−뷰틸산	0.00019	0.155	_	_	_	100	_	-	3
산 류	n-발레르산	0.000037	0.150	_	_	_	100	_	-	2
	i-발레르산	0.000078	_	_	_	_	_	_	-	0

<그림 4-18> 생물반응조(질산화조) 지정악취물질 기여도

4.3.3 슬러지처리공정

슬러지처리공정은 분뇨처리시설에서 발생하는 슬러지의 함수율을 감소시키는 처리공정으로 주요시설은 슬러지저류조, 탈수시설, 케이크저장실로 구성되어 있다.

가. 슬러지저류조

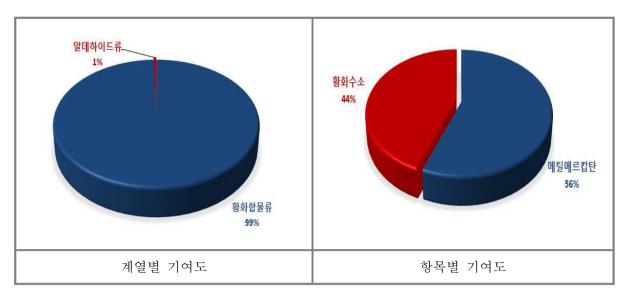

슬러지저류조의 대부분은 처리공정에서 발생된 슬러지를 일시 저류하는 시설 이며, 주요 측정지점은 조 내부이다.

(1) 복합악취

슬러지저류조에서 발생하는 복합악취 측정범위는 100배 이하 67%, 100~500배 22%순으로 나타났으며, 5,000배를 초과하는 경우는 11%인 것으로 나타났다.

<표 4-20> 슬러지저류조 복합악취 측정범위

	복합악취(총 시료수 : 9개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	11	1
2,000 ~ 5,000	_	_
1,000 ~ 2,000	-	_
500 ~ 1,000	-	_
100 ~ 500	22	2
100 이하	67	6


<그림 4-19> 슬러지저류조 복합악취 측정범위

(2) 지정악취물질

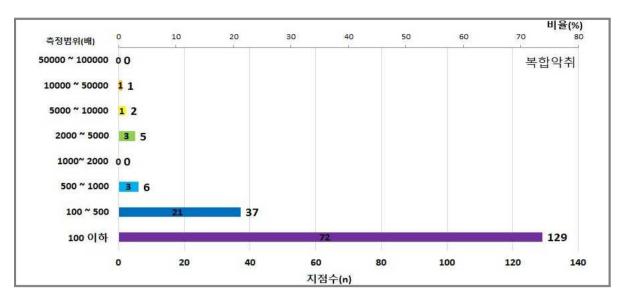
지정악취물질 계열별 기여도는 황화합물류가 99%로 대부분이고, 항목별 기여도는 황화합물류 중 메틸메르캅탄 56%, 황화수소가 44%로 나타났다.

<표 4-21> 슬러지저류조 지정악취물질 농도 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	0.333	-	-	-	67	33	ı	3
	트라이메틸아민	0.000032	-	-	-	-	-	-	-	_
<u></u> 항	황화수소	0.00041	20.7	-	20	40	20	-	20	5
화	메틸메르캅탄	0.00007	4.508	-	-	50	_	-	50	2
합 물	다이메틸설파이드	0.003	0.018	-	33	67	_	-	_	3
류	다이메틸다이설파이드	0.0022	-	-	-	-	-	-	_	-
	아세트알데하이드	0.0015	0.770	_	50	25	_	_	25	4
알 데	프로피온알데하이드	0.001	0.037	-	-	100	_	-	-	1
하 이	뷰틸알데하이드	0.00067	0.007	-	33	67	-	-	-	3
드류	n-발레르알데하이드	0.00041	_	-	-	-	-	-	-	-
71	i-발레르알데하이드	0.0001	0.002	-	100	-	-	-	-	1
	스타이렌	0.035	0.011	25	_	75	-	-	-	4
	톨루엔	0.33	0.477	-	-	50	25	25	-	4
V	자일렌	0.16	0.030	25	_	75	_	_	-	4
O C	메틸에틸케톤	0.44	0.308	25	-	50	_	25	-	4
S 류	메틸아이소뷰틸케톤	0.17	0.007	25	-	75	_	_	-	4
	뷰틸아세테이트	0.008	0.024	-	_	100	_	_	-	2
	i-뷰틸알코올	0.011	0.152	-	-	67	33	-	-	3
	프로피온산	0.0057	0.132	-	_	50	50	-	_	2
지 방	n−뷰틸산	0.00019	0.067	_	_	50	50	_	_	2
산 류	n-발레르산	0.000037	-	_	-	_	-	-	_	_
	i-발레르산	0.000078	_	_	_	_	_	_	_	_

<그림 4-20> 슬러지저류조 지정악취물질 기여도

나. 탈수시설


탈수시설은 처리공정에서 발생한 슬러지의 함수율을 감소시키기 위한 시설이며, 주요 측정지점은 탈수기 주변 및 실내공간이다.

(1) 복합악취

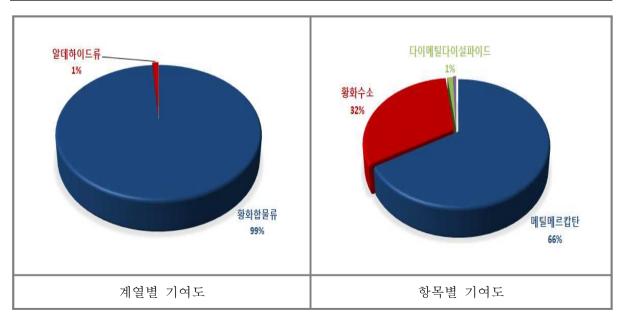
탈수시설에서 발생하는 복합악취 측정범위는 100배 이하 72%, 100~500배 21%, 500~1,000배 3%순으로 나타났으며, 500배 이하가 93%로 대부분을 차지하는 것으로 나타났다.

<표 4-22> 탈수시설 복합악취 측정범위

	복합악취(총 시료수 : 180개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	1	3
2,000 ~ 5,000	3	5
1,000 ~ 2,000	-	-
500 ~ 1,000	3	6
100 ~ 500	21	37
100 ০০ ক	72	129

<그림 4-21> 탈수시설 복합악취 측정범위

(2) 지정악취물질


지정악취물질 계열별 기여도는 황화합물류가 99%로 대부분이고, 항목별 기여도는 메틸메르캅탄 66%, 황화수소 32%순으로 나타났다.

<표 4-23> 탈수시설 지정악취물질 농도 측정범위

		최소감지농도	평균	비율(%)						시료수
	구 분	(mqq)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
	암모니아	1.5	0.067	33	-	67	-	_	ı	3
	트라이메틸아민	0.000032	-	_	-	_	_	_	-	_
<u></u> 항	황화수소	0.00041	0.503	4	27	41	10	14	4	51
원 화 합	메틸메르캅탄	0.00007	0.179	4	35	42	12	4	3	26
물류	다이메틸설파이드	0.003	0.039	11	37	43	9	_	ĺ	46
<i>T</i> T	다이메틸다이설파이드	0.0022	0.098	17	33	42	ı	8	I	24
	아세트알데하이드	0.0015	0.023	_	_	100	I	_	ı	4
알 데	프로피온알데하이드	0.001	0.004	50	_	50	ı	_	ı	2
하 이	뷰틸알데하이드	0.00067	0.017	_	_	100	I	_	ı	2
드류	n-발레르알데하이드	0.00041	-	_	_	_	_	_	ı	_
	i-발레르알데하이드	0.0001	_	_	_	_	_	_	_	_

<표 4-23> 계 속

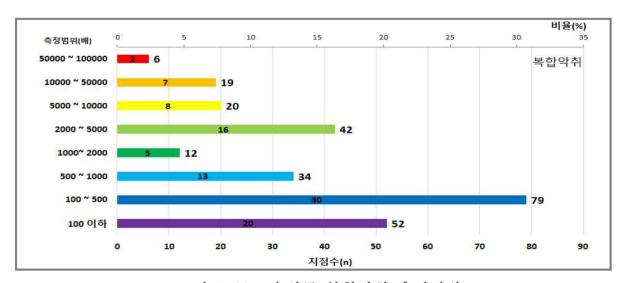
		최소감지농도	최소감지농도 평균		비율(%)					시료수
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	스타이렌	0.035	0.005	50	-	50	-	-	ı	4
	톨루엔	0.33	0.036	50	-	25	25	-	_	4
V	자일렌	0.16	0.018	25	-	75	-	-	_	4
0 C S	메틸에틸케톤	0.44	0.005	50	-	50	-	-	_	4
류	메틸아이소뷰틸케톤	0.17	0.003	50	25	25	-	-	_	4
	뷰틸아세테이트	0.008	0.009	50	_	50	_	-	-	2
	i-뷰틸알코올	0.011	0.020	33	-	67	-	-	_	3
	프로피온산	0.0057	_	_	_	-	_	-	-	_
지 방	n−뷰틸산	0.00019	_	_	_	_	_	_	1	_
산 류	n-발레르산	0.000037	_	_	_	_	_	_	-	_
	i-발레르산	0.000078	_	_	_	_	_	_	_	_

<그림 4-22> 탈수시설 지정악취물질 기여도

🔘 한국환경광단

4.3.4 악취방지시설

분뇨처리시설의 처리공정에서 발생하는 악취를 포집·처리하는 시설로, 주요 악취방지시설은 미생물에 의한 방식(바이오 필터), 수세정방식, 약액세정방식 등이 설치되어 운영 중에 있다.

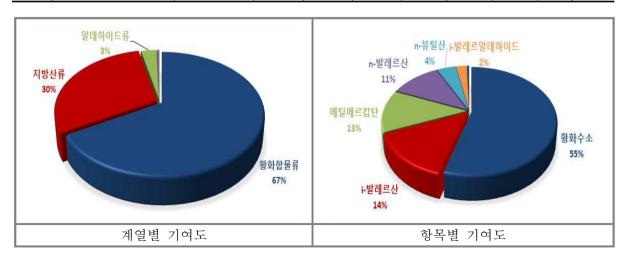

가. 유입구

(1) 복합악취

유입구에서 발생하는 복합악취 측정범위는 $100\sim500$ 배 30%, 100배 이하 20%, $2,000\sim5,000$ 배 16%, $500\sim1,000$ 배 13%순이고 5,000배를 초과하는 경우는 16%로 나타났다.

<표 4-24> 유입구 복합악취 측정범위

복합악취(총 시료수 : 264개)								
측정범위(배)	비율(%)	시료수(개)						
5,000 초과	16	45						
2,000 ~ 5,000	16	42						
1,000 ~ 2,000	5	12						
500 ~ 1,000	13	34						
100 ~ 500	30	79						
100 이하	20	52						


<그림 4-23> 유입구 복합악취 측정범위

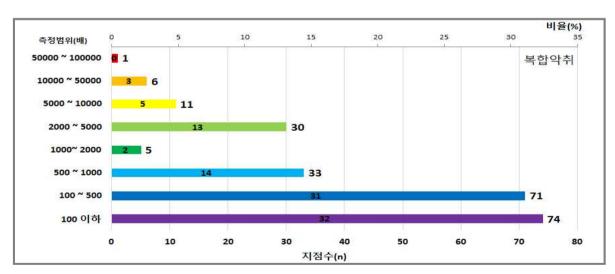
(2) 지정악취물질

유입구에서 발생하는 지정악취물질 계열별 기여도는 황화합물류가 67%, 지방산류가 30%의 비율을 차지하며, 항목별 기여도는 황화수소 55%, 메틸메르캅탄 13%, i-발레르산 14%순으로 나타났다.

<표 4-25> 유입구 지정악취물질 농도 및 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
	암모니아	1.5	2.092	21	-	15	39	14	11	165
	트라이메틸아민	0.000032	0.005	39	39	22	_	_	_	46
황	황화수소	0.00041	7.183	1	3	18	16	19	43	278
화 합	메틸메르캅탄	0.00007	0.284	2	9	41	30	16	2	179
물	다이메틸설파이드	0.003	0.108	2	25	48	20	5	_	100
류	다이메틸다이설파이드	0.0022	0.209	17	23	30	20	8	2	60
알	아세트알데하이드	0.0015	0.059	1	6	80	11	2	_	211
데	프로피온알데하이드	0.001	0.011	2	25	72	1	_	_	122
하 이	뷰틸알데하이드	0.00067	0.047	_	13	82	2	3	_	171
	n-발레르알데하이드	0.00041	0.021	11	35	46	8	_	-	37
ㅡ 류	i-발레르알데하이드	0.0001	0.079	3	21	67	3	6	_	34
	스타이렌	0.035	0.019	40	10	46	4	_	_	203
V	톨루엔	0.33	0.337	5	_	36	33	24	2	217
Ο	자일렌	0.16	0.070	23	4	61	9	3	_	216
С	메틸에틸케톤	0.44	0.241	19	8	61	5	4	3	201
S	메틸아이소뷰틸케톤	0.17	0.006	57	5	38	_	_	-	201
류	뷰틸아세테이트	0.008	0.010	35	6	59	_	-	-	148
	i-뷰틸알코올	0.011	0.011	32	6	62	_	_	-	125
지	프로피온산	0.0057	0.525	_	_	27	53	13	7	15
방	n-뷰틸산	0.00019	0.264	_		34	60	3	3	35
산	n-발레르산	0.000037	0.134	4	-	52	39	5	-	23
류	i-발레르산	0.000078	0.355	_	_	60	20	20	_	5

<그림 4-24> 유입구 지정악취물질 기여도

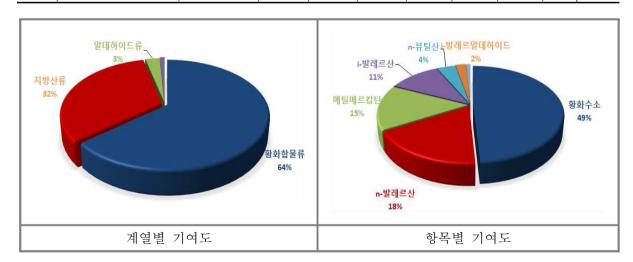

나. 배출구

(1) 복합악취

배출구에서 발생하는 복합악취 측정범위는 100배 이하 32%, 100~500배 31%로 500배 이하가 63%의 비율을 차지하며, 500~1,000배 14%, 2,000~5,000배 13%순이고 5,000배를 초과하는 경우는 8%로 나타났다.

<표 4-26> 배출구 복합악취 측정범위

	 복합악취(총 시료수 : 231개)								
측정범위(배)	비율(%)	시료수(개)							
5,000 초과	8	18							
2,000 ~ 5,000	13	30							
1,000 ~ 2,000	2	5							
500 ~ 1,000	14	33							
100 ~ 500	31	71							
100 이하	32	74							


<그림 4-25> 배출구 복합악취 측정범위

(2) 지정악취물질

배출구에서 발생하는 지정악취물질 계열별 기여도는 황화합물류가 64%, 지방산류가 32%의 비율을 차지하며, 항목별 기여도는 황화수소 49%, n-발레르산 18%, 메틸메르캅탄 15%순으로 나타났다.

<표 4-27> 배출구 지정악취물질 농도 및 측정범위

		최소감지농도	평균		비율(%)					시료수
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
	암모니아	1.5	1.813	21	_	27	27	16	9	123
	트라이메틸아민	0.000032	0.006	38	41	21	_	_	_	29
황	황화수소	0.00041	4.194	_	7	24	22	17	30	205
화 합	메틸메르캅탄	0.00007	0.223	2	10	44	29	15	_	139
물	다이메틸설파이드	0.003	0.051	4	17	64	15	-	_	110
류	다이메틸다이설파이드	0.0022	0.048	16	30	44	7	3	_	70
 알	아세트알데하이드	0.0015	0.055	2	8	81	8	1	_	172
데	프로피온알데하이드	0.001	0.011	4	31	65	_	_	-	94
하 이	뷰틸알데하이드	0.00067	0.033	3	16	79	1	1	-	140
	n-발레르알데하이드	0.00041	0.008	10	28	62	_	-	-	29
류	i-발레르알데하이드	0.0001	0.046	-	21	71	4	4	-	24
	스타이렌	0.035	0.017	47	6	45	1	1	_	164
	톨루엔	0.33	0.290	9	-	41	31	17	2	179
V O	자일렌	0.16	0.047	31	3	57	8	1	_	178
C	메틸에틸케톤	0.44	0.129	26	3	65	2	4	-	150
S 류	메틸아이소뷰틸케톤	0.17	0.004	61	8	31	-	-	-	160
71	뷰틸아세테이트	0.008	0.018	39	5	54	1	1	-	108
	i-뷰틸알코올	0.011	0.012	34	0	65	1		-	79
	프로피온산	0.0057	0.183		-	44	56	-	-	9
지 방	n−뷰틸산	0.00019	0.159		4	38	54	4	-	26
산 =	n-발레르산	0.000037	0.136		-	40	60	-	-	10
류	i-발레르산	0.000078	0.178	-	-	33	67	-	-	3

<그림 4-26> 배출구 지정악취물질 기여도

🔵 한국환경공단

4.4 문제점 및 개선방안

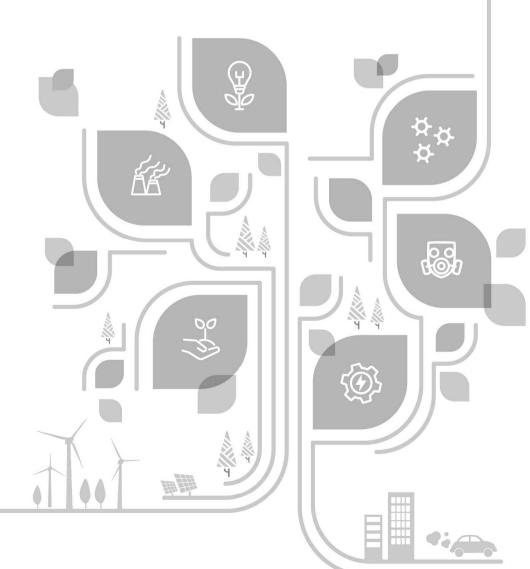
가. 분뇨반입장 투입설비 개선

분뇨반입장의 투입설비가 개방형으로 발생하는 악취를 포집 할 수가 없으며, 노후화된 개방형 분뇨투입기를 캐비넛형으로 교체하고, 악취포집시설을 설치 하여 발생하는 악취를 적절히 처리하는 등의 개선이 필요하다.

<그림 4-27> 분뇨반입장 투입설비 개선

나. 원수분배조 상부 덮개 및 악취포집설비 설치

분뇨처리시설 원수분배조 상부에 설치된 악취포집시설이 악취발생원과 이격 거리가 멀어 포집효율이 저하되므로 원수분배조 상부 밀폐 및 국소 악취포집 시설을 설치하여 악취확산을 최소화하도록 한다.



<그림 4-28> 원수분배조 상부 덮개 및 악취포집설비 설치

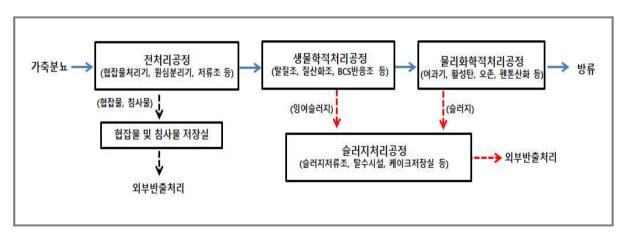
가축분뇨공공처리시설

- 5.1 현황
- 5.2 전체 악취물질 측정·분석
- 5.3 발생원별 악취물질 측정·분석
- 5.4 문제점 및 개선방안

제5장 가축분뇨공공처리시설

5.1 현황

5.1.1 개요


가축분뇨공공처리시설에 대한 사례집 자료는 2014년~2018년도에 악취기술진단을 실시했던 45개 처리시설의 악취물질 측정·분석 결과를 기초로 작성하였다.

<표 5-1> 처리공정별 악취물질 시료채취 현황

처리	처리 공정별 전처리공정 시설수 시료합계					생물학적처리공정						
기열구 (개소)	(기		소계	반입동		전처리시설 (협잡물처리기 등) 가축분뇨저류조 (생 ^된		생물반응조)				
45	1,0	01	353	29	158		1	166		70		
			슬러지:	처리공정				9	악취방	지시설		
		<u>ر</u>	ט דו דו פ ד		탈수	시설		유입구		uii ᄎᄀ		
소계 		=	러지저류조 -	탈수기설	킬	케이크	호퍼실			배출구		
274			81	117	76		17 76		6	174		130

5.1.2 가축분뇨처리공법 현황

가축분뇨처리는 축사 등에서 가축분뇨를 수거하여 처리시설로 운반·처리하는 방식이며, 처리방식은 생물학적처리방법과 물리화학적처리방법 등이 있다.

<그림 5-1> 가축분뇨공공처리시설 처리공정도

5.1.3 처리공정별 악취측정 지점 현황

악취측정 지점의 명칭은 처리시설 및 처리공법에 따라 상이하므로 공정별로 유사한 처리기능을 수행하는 지점으로 통합 분류하였으며, 주요 처리공정별 악취측정 지점은 아래와 같이 나타내었다.

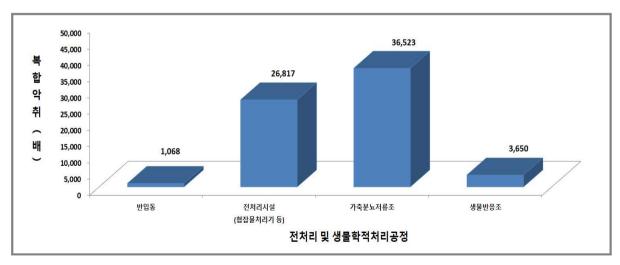
<표 5-2> 처리공정별 주요 악취측정 지점

구 분		ての きみじみ		
처리공정	발생원	주요 측정지점		
	반입동	반입동 실내공간, 전처리시설 주변		
전처리공정	전처리시설 (협잡물처리기 등)	전처리시설(협잡물처리기 등) 내부 및 주변, 협잡물 콘베이어		
	가축분뇨저류조	가축분뇨저류조 내부		
생물학적 처리공정	생물반응조	탈질조, 질산화조, BCS반응조 등		
슬러지	탈수시설	탈수기 주변, 탈수케이크 저장시설, 탈수기실 실내공간		
처리공정	슬러지저류조	슬러지저류조 내부		
악취방지시설		유입구, 배출구		

5.2 전체 악취물질 측정·분석

처리시설 분류는 전처리공정(반입동, 전처리시설, 분뇨저류조), 생물학적처리공정 (생물반응조), 슬러지처리공정(탈수시설, 슬러지저류조), 악취방지시설(유입구, 배출구)로 구분하였다.

악취물질 측정·분석 결과의 통계값은 복합악취의 희석배수 및 지정악취물질의 농도를 산술평균을 사용하여 악취농도로 제시하였으며, 통계값 적용에 있어 불 검출된 측정값은 통계분석에서 제외하였다.


5.2.1 복합악취

가. 전처리 및 생물학적처리공정

전처리공정의 복합악취(평균치)는 가축분뇨저류조가 36,523배로 상대적으로 높고 전처리시설(협잡물처리기 등) 26,817배순으로 나타났으며, 반입동의 실내공간 에서는 1,068배로 낮은 복합악취를 보이고 있다.

<표 5-3> 전처리 및 생물학적처리공정 평균 복합악취

		전처리공정		생물학적처리공정
구 분 	반입동	전처리시설 (협잡물처리기 등)	가축분뇨저류조	(생물반응조)
평균 복합악취(배)	1,068	26,817	36,523	3,650
전체 시료수(개)	29	158	166	70

<그림 5-2> 전처리 및 생물학적처리공정 평균 복합악취

나. 슬러지처리공정 및 악취방지시설

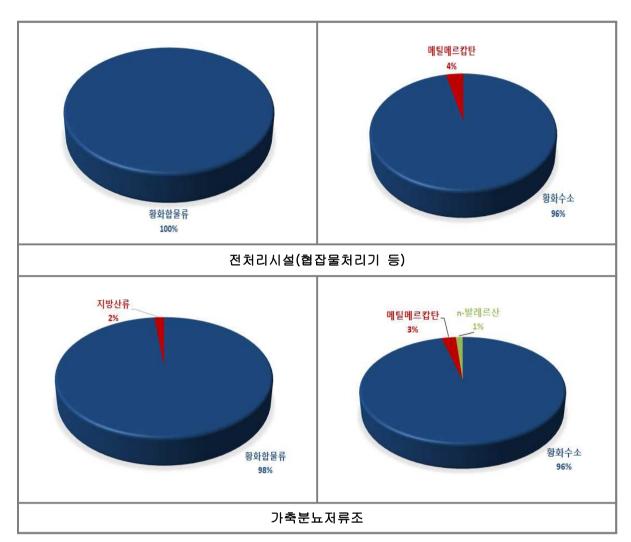
슬러지처리공정에서의 복합악취는 슬러지저류조에서 11,180배로 상대적으로 높게 발생하고 탈수시설(탈수기실)은 2,060배로 나타났으며, 악취방지시설에서는 유입구 18,809배, 배출구 8,652배로 나타났다.

<표 5-4> 슬러지처리공정 및 악취방지시설 평균 복합악취

		슬러지처리공정		악취방	지시설	
구 분	탈수시설 * 기기기기기기기기기기기기기기기기기기기기기기기기기기기기기기기기기기기기				÷ ¬	
	슬러지저류조	탈수기실 케이크		유입구	배출구	
평균 복합악취(배)	11,180	2,060	1,025	18,809	8,652	
전체 시료수(개) 81		117	76	174	130	

<그림 5-3> 슬러지처리공정 및 악취방지시설 평균 복합악취

5.2.2 지정악취물질


가. 전처리공정

전처리공정(반입동, 전처리시설, 가축분뇨저류조)의 계열별 기여도는 황화합물류가 높은 상태이며, 황화합물류 중 황화수소, 메틸메르캅탄의 기여도가 높은 것으로 나타났다.

<표 5-5> 전처리공정 지정악취물질 평균 농도

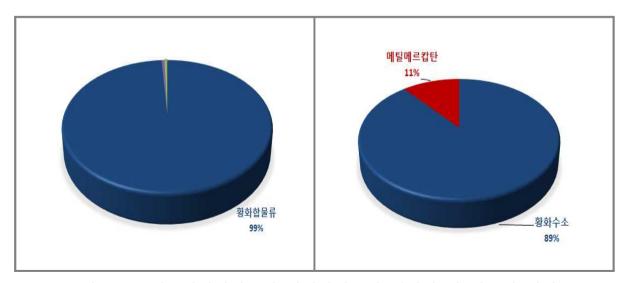
 구 분			전처리공정(ppm)								
	지정악취물질(ppn	n)	반입동		전처리시설 (협잡물처리기 등)			가축분뇨저류조			
항목 최소 감지농도			평균	최대	시료수 (개)	, 평균	최대), 시료수 (개)	평균	최대	시료수 (개)
	암모니아	1.5	_	_	_	15.2	88.8	22	27.9	257.8	56
	트라이메틸아민	0.000032	_	-	-	0.002	0.011	11	0.004	0.061	23
황	황화수소	0.00041	3.374	18.8	14	228.7	2,686	117	95.7	1,127	160
화 합	메틸메르캅탄	0.00007	0.001	0.003	2	1.479	7.974	24	0.459	4.626	23
물	다이메틸설파이드	0.003	0.012	0.017	3	0.543	9.773	38	0.543	7.048	51
류	다이메틸다이설파이드	0.0022	0.777	0.990	3	0.612	3.658	16	0.063	0.579	20
01	아세트알데하이드	0.0015	_	-	-	0.032	0.113	21	0.030	0.125	56
알 데	프로피온알데하이드	0.001	_	_	_	0.011	0.032	15	0.008	0.019	36
하 이	뷰틸알데하이드	0.00067	_	-	-	0.045	0.384	19	0.039	0.350	47
드류	n-발레르알데하이드	0.00041	_	-	-	0.013	0.025	5	0.008	0.012	6
77	i-발레르알데하이드	0.0001	_	-	-	0.019	0.040	8	0.020	0.174	20
	스타이렌	0.035	_	-	-	0.007	0.030	20	0.013	0.310	53
	톨루엔	0.33	-	-	-	0.170	1.730	22	0.109	1.570	57
V O	자일렌	0.16	_	-	-	0.029	0.350	22	0.026	0.400	55
С	메틸에틸케톤	0.44	_	-	-	0.107	0.820	20	0.131	1.630	54
S 류	메틸아이소뷰틸케톤	0.17	_	-	-	0.003	0.010	17	0.004	0.020	51
	뷰틸아세테이트	0.008	_	-	-	0.015	0.051	10	0.007	0.059	27
	i-뷰틸알코올	0.011	_	_	-	0.008	0.020	12	0.015	0.150	34
	프로피온산	0.0057	_	_	-	0.093	0.161	3	0.282	0.700	3
지 방	n-뷰틸산	0.00019	_	_	-	0.097	0.133	5	0.089	0.185	8
산 류	n-발레르산	0.000037	_	_	-	0.029	0.054	2	0.117	0.150	3
т <u>—</u> —	i−발레르산	0.000078	_	_		0.030	0.030	1	0.042	0.042	1

주) 반입동은 실내공간으로 주요 측정항목이 황화합물류임.

<그림 5-4> 전처리공정 지정악취물질 계열별 및 항목별 기여도

나. 생물학적처리공정

생물학적처리공정(생물반응조)의 계열별 기여도는 황화합물류 높은 상태이며, 황화합물류 중 황화수소, 메틸메르캅탄의 기여도가 높은 것으로 나타났다.


<표 5-6> 생물학적처리공정 지정악취물질 농도

구	분	생물학적처리공정(ppm)				
지정악취	물질(ppm)	생물반응조				
항목	평균	최대	시료수(개)			
암모니아	1.5	62.7	232.500	14		
트라이메틸아민	트라이메틸아민 0.000032		0.006	4		

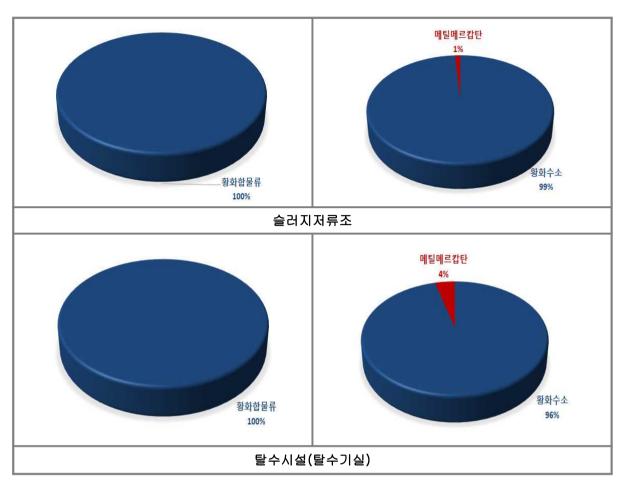
🔘 한국환경공단

<표 5-6> 계 속

	구 분		생물학적처리공정(ppm)					
	지정악취물질(ppm	1)	생물반응조					
	항목	최소 감지농도	평균	최대	시료수 (개)			
황	황화수소	0.00041	7.721	209.3	43			
화	메틸메르캅탄	0.00007	0.164	1.404	10			
합 물	다이메틸설파이드	0.003	0.059	1.742	43			
류	다이메틸다이설파이드	0.0022	0.059	0.135	12			
알	아세트알데하이드	0.0015	0.029	0.047	8			
데 하 이	프로피온알데하이드	0.001	0.006	0.010	6			
	뷰틸알데하이드	0.00067	0.009	0.024	6			
	n-발레르알데하이드	0.00041	_	-	-			
류	i-발레르알데하이드	0.0001	0.007	0.012	3			
	스타이렌	0.035	0.004	0.010	10			
	톨루엔	0.33	0.020	0.110	10			
V O	자일렌	0.16	0.005	0.030	10			
С	메틸에틸케톤	0.44	0.039	0.170	10			
S 류	메틸아이소뷰틸케톤	0.17	0.003	0.010	7			
71	뷰틸아세테이트	0.008	0.007	0.010	3			
	i-뷰틸알코올	0.011	0.007	0.010	3			
TI	프로피온산	0.0057	0.077	0.123	2			
지 방	n−뷰틸산	0.00019	0.014	0.014	1			
산	n−발레르산	0.000037	_	-	-			
류	i-발레르산	0.000078	_	-	_			

<그림 5-5> 생물학적처리공정 지정악취물질 계열별 및 항목별 기여도

다. 슬러지처리공정


슬러지처리공정의 계열별 기여도는 대부분 황화합물류이며, 항목별 기여도는 황화수소 및 메틸메르캅탄이 높게 나타났다.

<표 5-7> 슬러지처리공정 지정악취물질 농도

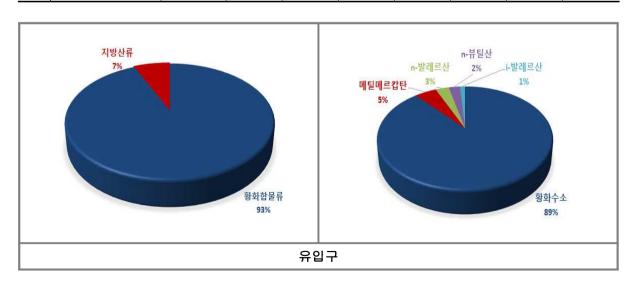
	구 분		슬러지처리공정(ppm)								
	지정악취물질(ppn	n)	슬	슬러지저류조 탈수시설(탈수		시설(탈수	기실) 탈수시설(케이		설(케이크	호퍼실)	
항목 최소 감지농도		평균	최대	시료수 (개)	평균	최대	시료수 (개)	평균	최대	시료수 (개)	
	암모니아	1.5	7.092	69.3	20	0.167	0.400	3	_	_	_
<u> </u>	트라이메틸아민	0.000032	0.002	0.002	2	0.001	0.001	1	_	_	-
황	황화수소	0.00041	84.6	2,710	61	4.154	192.1	54	1.675	17.0	43
화 합	메틸메르캅탄	0.00007	0.156	1.036	13	0.030	0.136	13	0.064	0.516	18
물	다이메틸설파이드	0.003	0.098	1.254	34	0.072	0.991	34	0.104	0.991	24
류	다이메틸다이설파이드	0.0022	0.037	0.220	19	0.009	0.069	13	0.014	0.069	8
알	아세트알데하이드	0.0015	0.029	0.107	20	0.006	0.007	3	_	_	-
데	프로피온알데하이드	0.001	0.008	0.018	9	0.002	0.002	1	_	_	-
하 이	뷰틸알데하이드	0.00067	0.017	0.052	15	0.010	0.011	2	_	_	-
드류	n-발레르알데하이드	0.00041	0.003	0.003	2	_	_	_	_	_	-
717	i-발레르알데하이드	0.0001	0.019	0.021	2	_	_	_	_	_	-
	스타이렌	0.035	0.012	0.130	18	0.007	0.010	3	-	-	-
	톨루엔	0.33	0.061	0.342	20	0.050	0.120	3	-	-	_
V O	자일렌	0.16	0.018	0.140	19	0.093	0.230	3	-	_	-
С	메틸에틸케톤	0.44	0.027	0.200	20	0.275	0.550	2	-	_	-
S 류	메틸아이소뷰틸케톤	0.17	0.005	0.015	16	0.007	0.010	3	-	_	-
	뷰틸아세테이트	0.008	0.009	0.020	10	0.017	0.020	3	-	-	_
	i-뷰틸알코올	0.011	0.023	0.100	9	0.030	0.030	1	-	_	_
	프로피온산	0.0057	_	_	_	_	_	_	_	_	_
지 방	n-뷰틸산	0.00019	0.065	0.106	3	_	_	_	_	_	-
산 류	n-발레르산	0.000037	_	_	_	_	_	_	_	_	_
	i-발레르산	0.000078	_	_	_	_	_	_	_	_	-

주) 탈수시설(케이크호퍼실)은 실내공간으로 주요 측정항목이 황화합물류임.

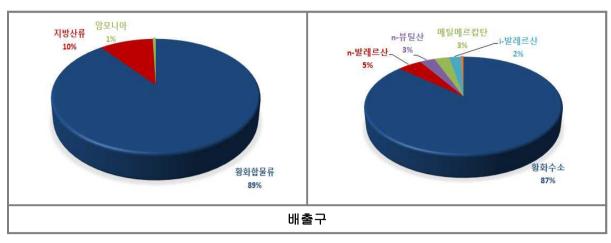
🔘 한국환경공단

<그림 5-6> 슬러지처리공정 지정악취물질 계열별 및 항목별 기여도

라. 악취방지시설


악취방지시설로 유입되는 주요 지정악취물질의 기여도는 황화합물류 및 지방 산류가 높은 비율을 차지하며, 항목별 기여도는 황화수소가 상대적으로 높은 기여도를 보이고 있다.

<표 5-8> 악취방지시설 지정악취물질 농도


구 분		악취방지시설(ppm)						
지정악취물질(ppm)		유입구			배출구			처리효율
항목	최소 감지농도	평균	최대	시료수 (개)	평균	최대	시료수 (개)	(평균,%)
암모니아	1.5	11.8	267.8	134	10.8	250.4	88	8
트라이메틸아민	0.000032	0.006	0.103	72	0.008	0.130	31	_

<표 5-8> 계 속

	구 분		악취방지시설(ppm)							
	지정악취물질(pp	m)	유입구				처리효율			
항목 최소 감지농5		최소 감지농도	평균	최대	시료수 (개)	평균	최대	시료수 (개)	(평균,%)	
황	황화수소	0.00041	29.6	541.5	184	15.8	302.9	127	47	
화 합	메틸메르캅탄	0.00007	0.274	2.830	36	0.092	0.695	46	66	
물	다이메틸설파이드	0.003	0.242	1.670	49	0.229	4.028	53	5	
류	다이메틸다이설파이드	0.0022	0.151	1.553	25	0.054	1.007	23	64	
알	아세트알데하이드	0.0015	0.031	0.655	140	0.026	0.161	110	16	
데	프로피온알데하이드	0.001	0.008	0.038	93	0.007	0.029	66	13	
하 이	뷰틸알데하이드	0.00067	0.025	0.111	118	0.020	0.137	99	20	
	n-발레르알데하이드	0.00041	0.005	0.013	26	0.005	0.012	15	_	
류	i-발레르알데하이드	0.0001	0.019	0.345	33	0.010	0.041	20	47	
	스타이렌	0.035	0.011	0.300	117	0.010	0.300	84	9	
	톨루엔	0.33	0.076	1.030	139	0.079	1.000	106	_	
V	자일렌	0.16	0.019	0.230	139	0.023	0.530	102	_	
С	메틸에틸케톤	0.44	0.044	1.860	131	0.028	0.550	96	36	
S 류	메틸아이소뷰틸케톤	0.17	0.005	0.050	129	0.004	0.022	93	20	
	뷰틸아세테이트	0.008	0.013	0.170	85	0.011	0.030	58	15	
	i-뷰틸알코올	0.011	0.009	0.051	69	0.009	0.053	43	_	
	프로피온산	0.0057	0.509	4.966	18	0.196	0.614	12	61	
지 방	n−뷰틸산	0.00019	0.388	2.863	33	0.252	1.061	23	35	
산 류	n−발레르산	0.000037	0.089	0.481	9	0.078	0.212	3	12	
 _	i-발레르산	0.000078	0.071	0.141	2	0.079	0.158	2	_	

🔿 한국환경광단

<그림 5-7> 악취방지시설 지정악취물질 계열별 및 항목별 기여도

5.2.3 총괄(복합악취 및 지정악취물질)

가축분뇨처리공정에서의 복합악취는 전처리공정의 전처리시설(협잡물처리기 등) 및 가축분뇨저류조에서 상대적으로 높게 발생하고 있으며, 반입동, 생물반응조 및 탈수시설에서는 낮은 복합악취를 보이고 있다.

지정악취물질은 계열별 기여도는 황화합물류 및 지방산류가 높은 비율을 차지하고 있으며, 항목별 기여도는 황화수소, 메틸메르캅탄, n-발레르산 등이 높게나타났다.

<표 5-9> 처리공정별 복합악취 및 주요 지정악취물질 기여도

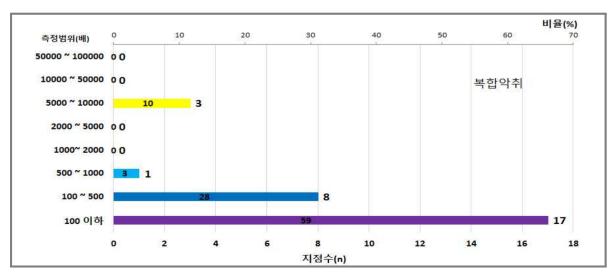
	7 B	복합악취(평균)	주요 지정악취	물질 기여도(%)	
	구 분	(84)	계열별	항목별	
	반입동	1,068	-	_	
전처리공정	전처리시설 (협잡물처리기 등)	26,817	황화합물류 100%	황화수소 96%, 메틸메르캅탄 4%	
	분뇨저류조	36,523	황화합물류 98%, 지방산류 2%	황화수소 96%, n-발레르산 1%	
생물학적 처리공정	생물반응조	3,650	황화합물류 99%	황화수소 89%, 메틸메르캅탄 11%	
	슬러지저류조	11,180	황화합물류 100%	황화수소 99%, 메틸메르캅탄 1%	
슬러지 처리공정	탈수시설(탈수기실)	2,060	황화합물류 100%	황화수소 96%, 메틸메르캅탄 4%	
	탈수시설(케이크호퍼)	1,025	-	_	
악취	유입구	18,809	황화합물류 93%, 지방산류 7%	황화수소 89%, n-발레르산 3%,	
방지시설 	배출구	8,652	황화합물류 89%, 지방산류 10%	황화수소 87%, n-발레르산 5%	

5.3 발생원별 악취물질 측정·분석

5.3.1 전처리공정

전처리공정은 가축분뇨 중에 포함되어 있는 협잡물, 모래 및 비부패성 무기질 입자를 제거할 목적으로 설치된 시설이다.

가. 반입동

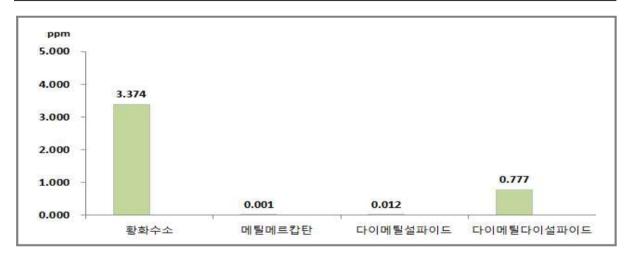

운반차량에 의해 처리시설로 반입된 가축분뇨는 반입동(반입시설)내의 협잡물 처리기로 이송·처리하며, 주요 측정지점은 전처리시설 주변 및 실내공간이다.

(1) 복합악취

반입동에서 발생하는 복합악취 측정범위는 100배 이하 59%, 100~500배가 28%로 높은 비율을 차지하고, 500배를 초과하는 비율은 10%로 나타났다.

<표 5-10> 반입동 복합악취 측정범위

복합악취(총 시료수 : 29개)							
측정범위(배)	비율(%)	시료수(개)					
5,000 초과	10	3					
2,000 ~ 5,000	_	_					
1,000 ~ 2,000	_	_					
500 ~ 1,000	3	1					
100 ~ 500	28	8					
100 이하	59	17					



<그림 5-8> 반입동 복합악취 측정범위

(2) 지정악취물질

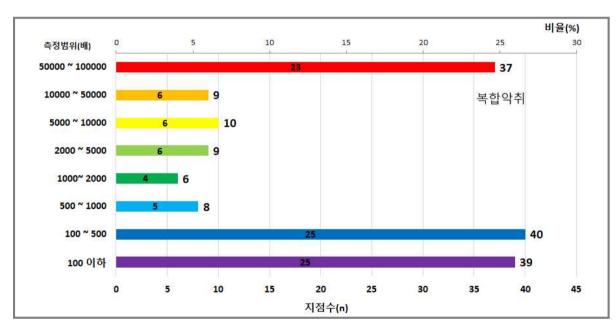
반입동은 지정악취물질 중 대부분 황화합물류를 측정하였으며, 항목별 평균 농도는 황화수소 3.374ppm, 다이메틸다이설파이드 0.777ppm, 다이메틸설파이드 0.012ppm, 메틸메르캅탄 0.001ppm순으로 나타났다.

구 분		최소감지농도	평균	비율(%) 평균						시료수	
		(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)	
	황화수소	0.00041	3.374	_	_	43	29	7	21	14	
황 화 합	메틸메르캅탄	0.00007	0.001	50	50	-	_	_	-	2	
^입 물 류	다이메틸설파이드	0.003	0.012	_	33	67	_	_	-	3	
	다이메틸다이설파이드	0.0022	0.777	_	_	_	33	67	_	3	

<그림 5-9> 반입동 황화합물류 평균 농도

나. 전처리시설(협잡물처리기 등)

전처리시설(협잡물처리기 등)은 가축분뇨 중에 포함되어 있는 협잡물, 모래 및 비부패성 무기질 입자를 제거할 목적으로 설치된 시설이며, 주요 측정지점은 협잡물처리기 내부 및 주변이다.

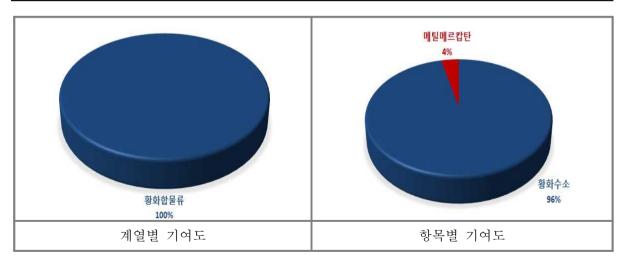

(1) 복합악취

협잡물처리기에서 발생하는 복합악취 측정범위는 100배 이하 25%, 100~500

배가 25%, 2,000~5,000배 6%, 500~1,000배 5%순이며, 5,000배를 초과하는 경우는 35%로 상대적으로 높은 비율을 차지하고 있다.

<표 5-12> 전처리시설(협잡물처리기 등) 복합악취 측정범위

복합악취(총 시료수 : 158개)							
측정범위(배)	비율(%)	시료수(개)					
5,000 초과	35	56					
2,000 ~ 5,000	6	9					
1,000 ~ 2,000	4	6					
500 ~ 1,000	5	8					
100 ~ 500	25	40					
100 이하	25	39					


<그림 5-10> 전처리시설(협잡물처리기 등) 복합악취 측정범위

(2) 지정악취물질

지정악취물질 계열별 기여도는 황화합물류 100%로 대부분을 차지하며, 항목별 기여도는 황화수소 96%, 메틸메르캅탄 4%순이며, 지정악취물질 중 황화수소 및 암모니아 농도가 높게 나타났다.

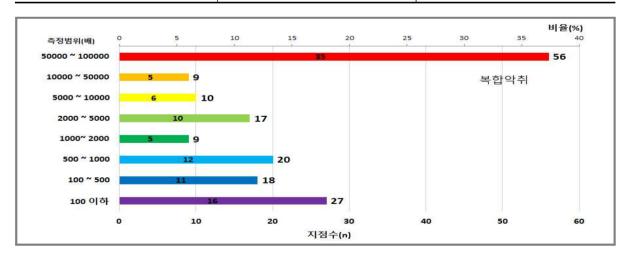
<哥 5-13>	전처리시설	(협잡물처리기	등) 지정악취물질	농도 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
	암모니아	1.5	15.2	_	_	_	5	32	63	22
	트라이메틸아민	0.000032	0.002	45	45	10	_	-	_	11
황	황화수소	0.00041	228.7	_	3	21	14	10	52	117
화 합	메틸메르캅탄	0.00007	1.479	8	17	38	4	13	20	24
물	다이메틸설파이드	0.003	0.543	8	34	34	11	5	8	38
류	다이메틸다이설파이드	0.0022	0.612	13	19	44	-	6	18	16
알	아세트알데하이드	0.0015	0.032	5	5	85	5	-	_	21
데 	프로피온알데하이드	0.001	0.011	_	33	67	-	-	_	15
하 이	뷰틸알데하이드	0.00067	0.045	_	11	84	5	-	_	19
<u></u>	n-발레르알데하이드	0.00041	0.013	_	20	80	-	-	-	5
류	i-발레르알데하이드	0.0001	0.019	_	13	87	-	-	-	8
	스타이렌	0.035	0.007	55	5	40	-	-	-	20
\ /	톨루엔	0.33	0.170	23	-	45	23	9	-	22
V	자일렌	0.16	0.029	50	5	36	9	-	-	22
С	메틸에틸케톤	0.44	0.107	15	_	65	15	5	_	20
S 류	메틸아이소뷰틸케톤	0.17	0.003	65	6	29	-	-	-	17
ਜ	뷰틸아세테이트	0.008	0.015	40	_	60	-	-	-	10
	i-뷰틸알코올	0.011	0.008	42	8	50	-	-	-	12
	프로피온산	0.0057	0.093	_	_	67	33	-	_	3
방	n-뷰틸산	0.00019	0.097	_	_	60	40	-	_	5
산	n-발레르산	0.000037	0.029	_	50	50	_	-	_	2
류 	i-발레르산	0.000078	0.030	-	-	100	-	-	_	1

** 악취기여도(%) : $\left\{ \frac{($ 개별악취물질농도/개별악취물질의최소감지농도)}{[(개별악취물질농도/개별악취물질의최소감지농도)]의총합 $\right\} \times 100$

<그림 5-11> 전처리시설(협잡물처리기 등) 지정악취물질 기여도

다. 가축분뇨저류조

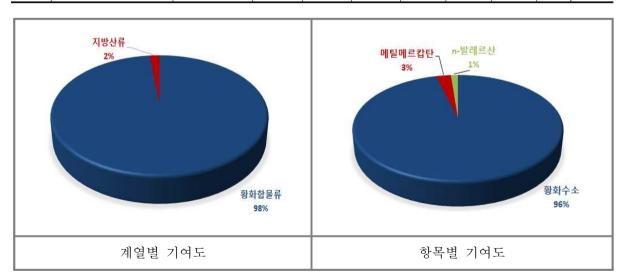

가축분뇨저류조는 협잡물처리기를 거친 반입분뇨를 일시 저류하는 시설이며, 주요 측정지점은 조 내부이다.

(1) 복합악취

가축분뇨저류조에서 발생하는 복합악취 측정범위는 100배 이하 16%, 500~1,000배 12%, 100~500배가 11%순이며, 5,000배를 초과하는 경우는 46%로 상대적으로 높은 비율을 차지하고 있다.

<표 5-14> 가축분뇨저류조 복합악취 측정범위

	복합악취(총 시료수 : 166개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	46	75
2,000 ~ 5,000	10	17
1,000 ~ 2,000	5	9
500 ~ 1,000	12	20
100 ~ 500	11	18
100 이하	16	27


<그림 5-12> 가축분뇨저류조 복합악취 측정범위

(2) 지정악취물질

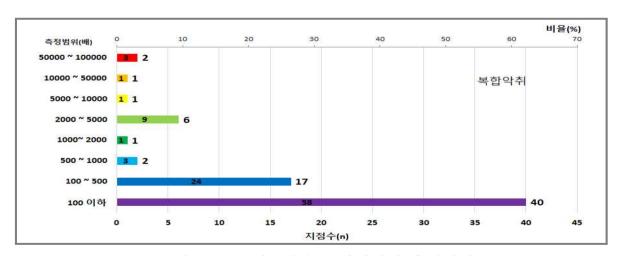
지정악취물질 계열별 기여도는 황화합물류가 98%로 대부분을 차지하며, 항목별 기여도는 황화수소 96%, 메틸메르캅탄 35%순이며, 지정악취물질 중 황화수소 및 암모니아 농도가 높게 나타났다.

<표 5-15> 가축분뇨저류조 지정악취물질 농도 측정범위

		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(기)
	암모니아	1.5	27.9	2	_	2	9	27	60	56
	트라이메틸아민	0.000032	0.004	48	48	4	_	_	_	23
황	황화수소	0.00041	95.7	1	3	12	8	12	64	160
화 합	메틸메르캅탄	0.00007	0.459	4	17	43	22	4	10	23
물	다이메틸설파이드	0.003	0.543	4	8	39	25	20	4	51
류	다이메틸다이설파이드	0.0022	0.063	_	35	50	10	5	-	20
알	아세트알데하이드	0.0015	0.030	_	5	90	5	-	_	56
데 	프로피온알데하이드	0.001	0.008	3	28	69	-	-	_	36
하 이	뷰틸알데하이드	0.00067	0.039	_	6	88	6	-	_	47
<u></u>	n-발레르알데하이드	0.00041	0.008	_	33	67	-	-	-	6
류	i-발레르알데하이드	0.0001	0.020	_	10	85	5	-	-	20
	스타이렌	0.035	0.013	62	2	32	4	-	-	53
\ /	톨루엔	0.33	0.109	25	4	47	19	5	-	57
V	자일렌	0.16	0.026	44	9	40	7	-	-	55
С	메틸에틸케톤	0.44	0.131	11	4	57	22	6	_	54
S 류	메틸아이소뷰틸케톤	0.17	0.004	63	2	35	-	-	-	51
ਜ	뷰틸아세테이트	0.008	0.007	52	_	48	-	-	-	27
	i-뷰틸알코올	0.011	0.015	50	6	41	3	-	-	34
	프로피온산	0.0057	0.282	_	-	67	-	33	-	3
방	n-뷰틸산	0.00019	0.089	_	_	62	38	-	_	8
산	n−발레르산	0.000037	0.117	_	_	33	67	-	_	3
류 	i-발레르산	0.000078	0.042	-	-	100	-	-	_	1

<그림 5-13> 가축분뇨저류조 지정악취물질 기여도

5.3.2 생물학적처리공정

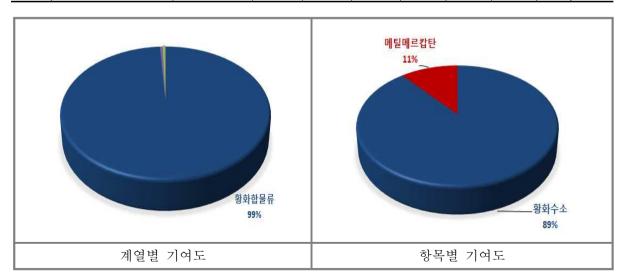

생물학적처리공정은 분뇨중의 Colloid성 및 용해성 유기물을 미생물에 의해 생물학적으로 제거하는 공정으로써 단위공정 중 핵심이 되는 주요 공정이며, 주요 측정지점은 조 내부이다.

(1) 복합악취

생물반응조에서 발생하는 복합악취 측정범위는 100배 이하가 58%로 높은 비율을 차지하고, 100~500배 24%, 2,000~5,000배 9%순이며, 5,000배를 초과하는 경우는 5%인 것으로 나타났다.

<표 5-16> 생물반응조 복합악취 측정범위

	복합악취(총 시료수 : 70개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	5	4
2,000 ~ 5,000	9	6
1,000 ~ 2,000	1	1
500 ~ 1,000	3	2
100 ~ 500	24	17
100 이하	58	40


<그림 5-14> 생물반응조 복합악취 측정범위

(2) 지정악취물질

지정악취물질 기여도는 황화합물류 99%로 대부분이며, 황화합물류 중 황화수소가 89%, 메틸메르캅탄 11%로 나타났으며, 지정악취물질 중 암모니아가 높은 농도를 보이고 있다.

<표 5-17> 생물반응조 지정악취물질 농도 측정범위

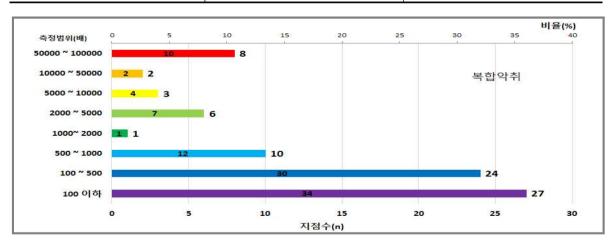
		최소감지농도	평균			비율(%)			시료수
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	62.7	_	_	7	7	14	72	14
	트라이메틸아민	0.000032	0.002	50	25	25	_	-	_	4
황	황화수소	0.00041	7.721	5	21	33	7	12	22	43
화 합	메틸메르캅탄	0.00007	0.164	_	60	20	10	10	-	10
물	다이메틸설파이드	0.003	0.059	_	35	58	5	2	_	43
류	다이메틸다이설파이드	0.0022	0.059	-	25	42	33	-	_	12
 알	아세트알데하이드	0.0015	0.029	-	_	100	_	-	_	8
데	프로피온알데하이드	0.001	0.006	-	17	83	_	_	_	6
하 이	뷰틸알데하이드	0.00067	0.009	-	50	50	_	_	-	6
	n-발레르알데하이드	0.00041	-	-	-	-	-	-	_	_
류	i-발레르알데하이드	0.0001	0.007	-	33	67	_	_	-	3
	스타이렌	0.035	0.004	60	-	40	-	-	_	10
. ,	톨루엔	0.33	0.020	20	_	70	10	_	_	10
V	자일렌	0.16	0.005	80	-	20	-	-	_	10
C	메틸에틸케톤	0.44	0.039	10	_	80	10	-	_	10
S 류	메틸아이소뷰틸케톤	0.17	0.003	71	-	29	-	-	_	7
77	뷰틸아세테이트	0.008	0.007	33	_	67	-	-	_	3
	i-뷰틸알코올	0.011	0.007	33	-	67	-	-	_	3
	프로피온산	0.0057	0.077	-	_	50	50	-	-	2
방	n−뷰틸산	0.00019	0.014	-	_	100	_	-	_	1
산	n-발레르산	0.000037	-	-	-	-	_	-	_	-
류	i−발레르산	0.000078	ı	_	_	_	_	_	_	_

<그림 5-15> 생물반응조 지정악취물질 기여도

5.3.3 슬러지처리공정

슬러지처리공정은 가축분뇨처리시설에서 발생하는 슬러지의 함수율을 감소시키는 처리공정으로 주요시설은 슬러지저류조, 탈수시설로 구성되어 있다.

가. 슬러지저류조

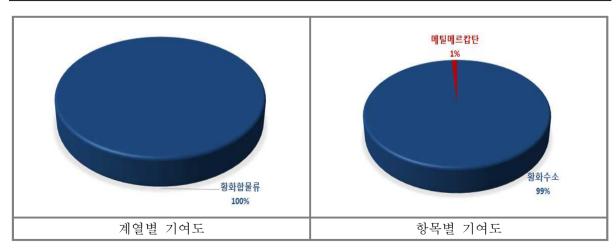

슬러지저류조는 처리공정에서 발생된 슬러지를 일시 저류하는 시설이며, 주요 측정지점은 조 내부이다.

(1) 복합악취

슬러지저류조에서 발생하는 복합악취 측정범위는 100배 이하 34%, 100~500배 30%, 500~1,000배 12%순이며, 5,000배를 초과하는 경우는 16%인 것으로 나타났다.

<표 5-18> 슬러지저류조 복합악취 측정범위

	복합악취(총 시료수 : 81개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	16	13
2,000 ~ 5,000	7	6
1,000 ~ 2,000	1	1
500 ~ 1,000	12	10
100 ~ 500	30	24
100 이하	34	27


<그림 5-16> 슬러지저류조 복합악취 측정범위

(2) 지정악취물질

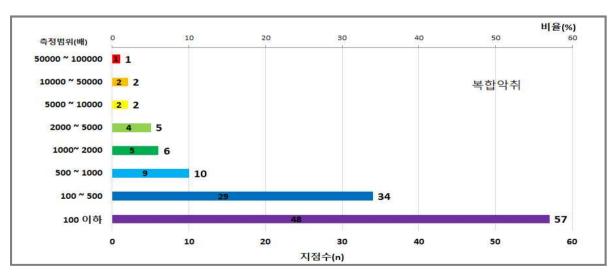
지정악취물질 계열별 기여도는 황화합물류가 대부분이고, 항목별 기여도는 황화합물류 중 황화수소가 99%, 메틸메르캅탄 1%로 나타났다.

<哥 5-19)	> 슬러지저류조	지정악취물질	농도	측정범위

		최소감지농도	평균			비율(%)			- 시료수 (개)
	구 분	(ppm)	(ppm)	0.000~ 0.001	0.001~ 0.005	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	
	암모니아	1.5	7.092	10	-	5	20	30	35	20
	트라이메틸아민	0.000032	0.002	50	50	_	_	_	100	2
 황	황화수소	0.00041	84.6	-	11	26	13	13	37	61
화	메틸메르캅탄	0.00007	0.156	8	31	38	15	8	-	13
합 물	다이메틸설파이드	0.003	0.098	6	24	55	9	6	-	34
_ 류	다이메틸다이설파이드	0.0022	0.037	5	21	63	11	-	-	19
 알 데	아세트알데하이드	0.0015	0.029	_	5	90	5	-	-	20
	프로피온알데하이드	0.001	0.008	_	22	78	-	-	-	9
하 이	뷰틸알데하이드	0.00067	0.017	_	7	93	-	-	-	15
<u>_</u>	n-발레르알데하이드	0.00041	0.003	_	100	-	_	-	-	2
류	i-발레르알데하이드	0.0001	0.019	_	_	100	_	_	_	2
	스타이렌	0.035	0.012	50	_	44	6	_	-	18
\ /	톨루엔	0.33	0.061	15	-	70	15	_	-	20
V O	자일렌	0.16	0.018	47	_	47	6	_	-	19
С	메틸에틸케톤	0.44	0.027	40	-	55	5	_	-	20
S 류	메틸아이소뷰틸케톤	0.17	0.005	50	-	50	_	-	-	16
71	뷰틸아세테이트	0.008	0.009	40	_	60	_	_	1	10
	i-뷰틸알코올	0.011	0.023	33	_	67	_	_	-	9
——— 지	프로피온산	0.0057	ı	-	-	_	_	_		-
방	n-뷰틸산	0.00019	0.065	-	-	67	33	_	_	3
산 =	n-발레르산	0.000037	ı	-	-	-	_	_	ı	-
류	i-발레르산	0.000078	1	_	-	_	_	_	_	-

<그림 5-17> 슬러지저류조 지정악취물질 기여도

나. 탈수시설(탈수기실)

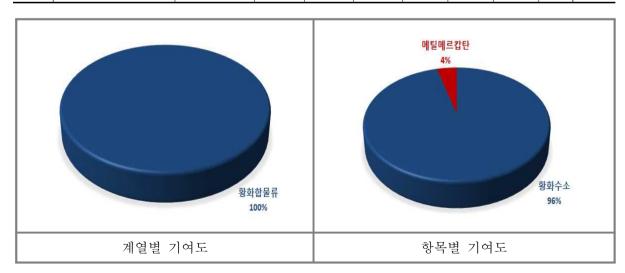

탈수시설(탈수기실)은 처리공정에서 발생한 슬러지의 함수율을 감소시키기 위한 시설이며, 주요 측정지점은 탈수기 주변 및 실내공간이다.

(1) 복합악취

탈수시설(탈수기실)에서 발생하는 복합악취 측정범위는 100배 이하 48%, 100 ~500배 29%, 500~1,000배 9%순이며, 500배 이하가 77%로 높은 비율을 차지하는 것으로 나타났다.

<표 5-20> 탈수시설(탈수기실) 복합악취 측정범위

	복합악취(총 시료수 : 117개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	5	5
2,000 ~ 5,000	4	5
1,000 ~ 2,000	5	6
500 ~ 1,000	9	10
100 ~ 500	29	34
100 이하	48	57


<그림 5-18> 탈수시설(탈수기실) 복합악취 측정범위

(2) 지정악취물질

지정악취물질 계열별 기여도는 황화합물류가 대부분이고, 항목별 기여도는 황화수소 96%, 메틸메르캅탄 4%로 나타났다.

<표 5-21> 탈수시설(탈수기실) 지정악취물질 농도 측정범위

		최소감지농도	평균			비율(%)			시료수 (개)
	구 분	(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	
	암모니아	1.5	0.167	33	_	33	34	-	_	3
	트라이메틸아민	0.000032	0.001	100	-	-	_	_	_	1
황	황화수소	0.00041	4.154	2	9	39	20	19	11	54
화 합	메틸메르캅탄	0.00007	0.030	_	46	46	8	_	_	13
물	다이메틸설파이드	0.003	0.072	6	26	44	21	3	_	34
류	다이메틸다이설파이드	0.0022	0.009	23	46	31	-	-	_	13
 알	아세트알데하이드	0.0015	0.006	-	33	67	_	-	_	3
데	프로피온알데하이드	0.001	0.002	-	100	_	-	-	_	1
하 이	뷰틸알데하이드	0.00067	0.010	-	-	100	_	-	_	2
	n-발레르알데하이드	0.00041	-	-	-	-	-	-	-	_
류	i-발레르알데하이드	0.0001	_	-	-	_	-	-	_	_
	스타이렌	0.035	0.007	33	-	67	-	-	_	3
	톨루엔	0.33	0.050	-	_	67	33	-	-	3
V	자일렌	0.16	0.093	-		67	33	-	_	3
С	메틸에틸케톤	0.44	0.275	50			-	50	-	2
S 류	메틸아이소뷰틸케톤	0.17	0.007	33	-	67	-	-	-	3
77	뷰틸아세테이트	0.008	0.017	-	_	100	_	-	-	3
	i-뷰틸알코올	0.011	0.030	-	_	100	_	-	-	1
 	프로피온산	0.0057	-	-	-		_	-	-	-
시 방	n−뷰틸산	0.00019	-	-			-	-	-	-
산 =	n-발레르산	0.000037	-	-	-		_	-	-	-
류	i−발레르산	0.000078	-	-	_	-	_	-	_	-

<그림 5-19> 탈수시설(탈수기실) 지정악취물질 기여도

다. 탈수시설(케이크호퍼실)

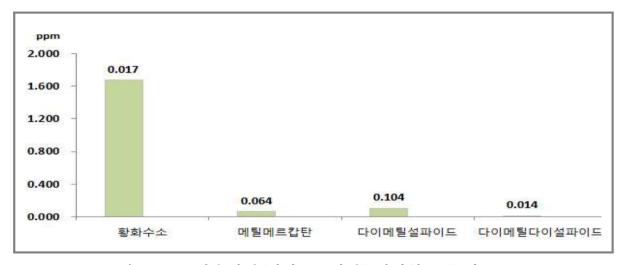
탈수시설(케이크호퍼실)은 탈수케이크를 외부반출 전 적재함(호퍼)에 일시 보관하는 시설이며, 주요 측정지점은 탈수케이크 적재함 주변 및 실내공간이다.

(1) 복합악취

탈수시설(케이크호퍼실)에서 발생하는 복합악취 측정범위는 $100\sim500$ 배 36%, 100배 이하 30%, $500\sim1,000$ 배 13%순이며, 2,000배 초과가 16%의 비율을 차지하는 것으로 나타났다.

<표 5-22> 탈수시설(케이크호퍼실) 복합악취 측정범위

	복합악취(총 시료수 : 76개)	
측정범위(배)	비율(%)	시료수(개)
5,000 초과	4	3
2,000 ~ 5,000	12	9
1,000 ~ 2,000	5	4
500 ~ 1,000	13	10
100 ~ 500	36	27
100 이하	30	23


<그림 5-20> 탈수시설(케이크호퍼실) 복합악취 측정범위

(2) 지정악취물질

반입동은 지정악취물질 중 대부분 황화합물류를 측정하였으며, 항목별 평균 농도는 황화수소 1.675ppm, 다이메틸설파이드 0.104ppm, 메틸메르캅탄 0.064ppm, 다이메틸다이설파이드 0.014ppm순으로 나타났다.

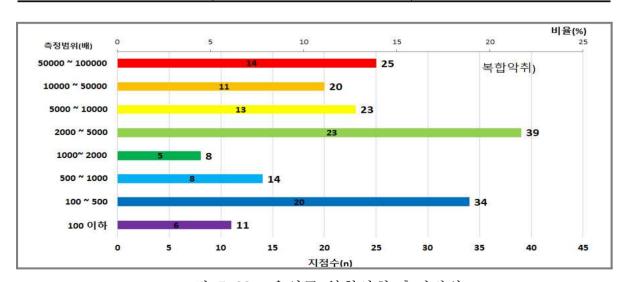
<표 5-23> 탈수시설(케이크호퍼실) 지정악취물질 농도 측정범위

		최소감지농도	평균	비율(%)						시료수
구 분 		(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
황 화 -	황화수소	0.00041	1.675	2	9	40	16	7	26	43
	메틸메르캅탄	0.00007	0.064	6	50	28	11	6	-	18
합물	다이메틸설파이드	0.003	0.104	13	13	50	21	4	-	24
류	다이메틸다이설파이드	0.0022	0.014	_	50	50	_	_	ı	8

<그림 5-21> 탈수시설(케이크호퍼실) 황화합물류 평균 농도

5.3.4 악취방지시설

가축분뇨처리시설의 처리공정에서 발생하는 악취를 포집·처리하는 시설로, 주요 악취방지시설은 미생물에 의한 방식(바이오 필터), 수세정방식, 약액세정방식 등이 설치되어 운영 중에 있다.

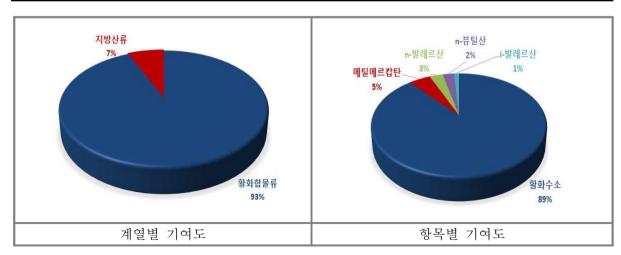

가. 유입구

(1) 복합악취

유입구에서 발생하는 복합악취 측정범위는 2,000~5,000배 23%, 100~500배 20%, 500~1,000배 13%순이고, 5,000배를 초과하는 경우는 38%로 높은 비율을 보이고 있다.

<표 5-24> 유입구 복합악취 측정범위

복합악취(총 시료수 : 174개)							
측정범위(배)	비율(%)	시료수(개)					
5,000 초과	38	68					
2,000 ~ 5,000	23	39					
1,000 ~ 2,000	5	8					
500 ~ 1,000	8	14					
100 ~ 500	20	34					
100 이하	6	11					


<그림 5-22> 유입구 복합악취 측정범위

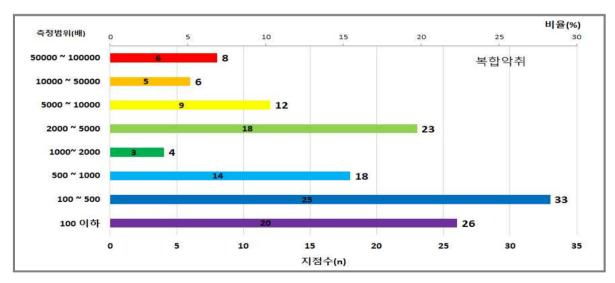
(2) 지정악취물질

유입구에서 발생하는 지정악취물질 계열별 기여도는 황화합물류가 93%, 지방산류가 7%의 비율을 차지하며, 항목별 기여도는 황화수소 89%, 메틸메르캅탄 5%, n-발레르산 3%순으로 나타났다.

<표 5-25> 유입구 지정악취물질 농도 및 측정범위

구 분		최소감지농도 평균		비율(%)						시료수
		(ppm)	(ppm)	0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
	암모니아	1.5	11.8	4	1	7	15	28	45	134
	트라이메틸아민	0.000032	0.006	26	58	14	2	-	_	72
황	황화수소	0.00041	29.6	-	1	7	10	12	70	184
화	메틸메르캅탄	0.00007	0.274	6	6	42	31	15	-	36
합 물	다이메틸설파이드	0.003	0.242	14	2	41	29	14	-	49
류	다이메틸다이설파이드	0.0022	0.151	12	32	40	4	12	-	25
알	아세트알데하이드	0.0015	0.031	1	7	87	4	1	-	140
데 -:	프로피온알데하이드	0.001	0.008	5	42	53	_		-	93
하 이 드 류	뷰틸알데하이드	0.00067	0.025	2	8	89	1	-	_	118
	n-발레르알데하이드	0.00041	0.005	19	35	46	-	-	_	26
	i-발레르알데하이드	0.0001	0.019	3	27	67	3	-	_	33
	스타이렌	0.035	0.011	55	2	42	1	-	_	117
V	톨루엔	0.33	0.076	19	1	67	7	6	-	139
0	자일렌	0.16	0.019	41	4	51	4	_	ı	139
C S 류	메틸에틸케톤	0.44	0.044	10	2	84	3	1	ı	131
	메틸아이소뷰틸케톤	0.17	0.005	56	1	43	_	-	ı	129
	뷰틸아세테이트	0.008	0.013	32	2	65	1	-	ı	85
	i-뷰틸알코올	0.011	0.009	43	_	57	_	-	ı	69
지	프로피온산	0.0057	0.509	6	_	50	22	17	5	18
방	n-뷰틸산	0.00019	0.388	3	3	30	45	15	4	33
산	n−발레르산	0.000037	0.089	11	11	56	22	_	-	9
류	i-발레르산	0.000078	0.071	50	-	_	50	_	-	2

<그림 5-23> 유입구 지정악취물질 기여도

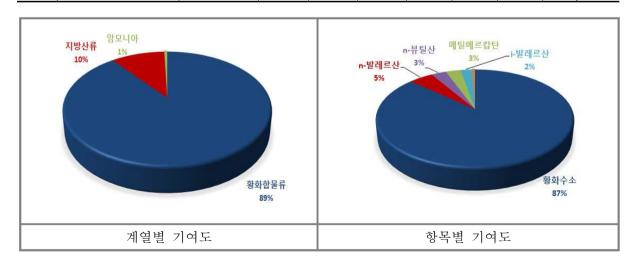

나. 배출구

(1) 복합악취

배출구에서 발생하는 복합악취 측정범위는 $100\sim500$ 배 25%, 100배 이하 20%, $2,000\sim5,000$ 배 18%, $500\sim1,000$ 배 14%순이고, 5,000배를 초과하는 경우는 20%로 나타났다.

<표 5-26> 배출구 복합악취 측정범위

복합악취(총 시료수 : 130개)							
측정범위(배)	비율(%)	시료수(개)					
5,000 초과	20	26					
2,000 ~ 5,000	18	23					
1,000 ~ 2,000	3	4					
500 ~ 1,000	14	18					
100 ~ 500	25	33					
100 이하	20	26					


<그림 5-24> 배출구 복합악취 측정범위

(2) 지정악취물질

배출구에서 발생하는 지정악취물질 계열별 기여도는 황화합물류가 89%, 지방산류가 10%의 비율을 차지하며, 항목별 기여도는 황화수소 87%, n-발레르산 5%, 메틸메르캅탄 3%순으로 나타났다.

<표 5-27> 배출구 지정악취물질 농도 및 측정범위

구 분		최소감지농도 (ppm)	평균 (ppm)	비율(%)						시료수
				0.0000~ 0.0010	0.0010~ 0.0050	0.005~ 0.100	0.101~ 0.500	0.501~ 2.000	2.0 초과	(개)
암모니아		1.5	10.8	10	2	16	25	16	31	88
트라이메틸아민		0.000032	0.008	29	55	13	3	_	_	31
빵 화 합 돼 유	황화수소	0.00041	15.8	1	6	17	10	18	48	127
	메틸메르캅탄	0.00007	0.092	4	17	46	28	5	_	46
	다이메틸설파이드	0.003	0.229	9	13	55	15	4	4	53
	다이메틸다이설파이드	0.0022	0.054	22	39	35	_	4	_	23
알 데 하 이 드 류	아세트알데하이드	0.0015	0.026	2	7	87	4	-	-	110
	프로피온알데하이드	0.001	0.007	2	38	60	-	-	-	66
	뷰틸알데하이드	0.00067	0.020	1	14	83	2	-	_	99
	n-발레르알데하이드	0.00041	0.005	13	47	40	-	-	-	15
	i-발레르알데하이드	0.0001	0.010	-	40	60	-	-	-	20
	스타이렌	0.035	0.010	61	1	37	1	-	-	84
	톨루엔	0.33	0.079	20	1	65	9	5	-	106
V	자일렌	0.16	0.023	41	1	55	2	1	-	102
C	메틸에틸케톤	0.44	0.028	21	1	75	2	1	_	96
S 류	메틸아이소뷰틸케톤	0.17	0.004	59	1	40	_	-	_	93
	뷰틸아세테이트	0.008	0.011	34	-	66	_	-	_	58
	i-뷰틸알코올	0.011	0.009	44	_	56	_	-	_	43
지 방 산 류	프로피온산	0.0057	0.196	8	-	42	33	17	_	12
	n−뷰틸산	0.00019	0.252	4	_	22	61	13	_	23
	n-발레르산	0.000037	0.078	33	_	33	34	_	_	3
	i-발레르산	0.000078	0.079	50	-	-	50	-	-	2

<그림 5-25> 배출구 지정악취물질 기여도

5.4 문제점 및 개선방안

가. 협잡물 저장실 구조물 개선

전처리공정에서 발생하는 협잡물의 저장을 위해 암롤박스가 설치되어있으나, 반출주기가 잦아 차량에 거치된 상태로 반출실의 완전 밀폐가 어려운 상태로 반출실의 일부 전면부(반출차량 앞)를 확장 후 스피드도어를 설치하여 반출실을 밀폐하고 공간포집설비(후드)를 설치하여 악취 확산 방지하도록 한다.

<그림 5-26> 협잡물 저장실 구조물 개선

나. 가축분뇨 투입구 시설개선

가축분뇨 투입 시 누출되는 소량의 가축분뇨는 투입구 하부에 설치되어 있는 누액 받이를 거쳐 저류조로 유출되나, 상부가 개방된 상태여서 악취확산의 원인이 되고 있으므로 투입구에 캐비넷형 밀폐설비와 악취포집설비 설치가 요구된다.

<그림 5-27> 가축분뇨 투입구 시설개선